University of London

B. Sc. Examination by course unit 2015

MTH 5120: Statistical Modelling I

Duration: 2 hours

Date and time: 30.04.2015, 14.30-16.30

Apart from this page, you are not permitted to read the contents of this question paper until instructed to do so by an invigilator.

You should attempt ALL questions. Marks awarded are shown next to the questions.

Calculators ARE permitted in this examination. The unauthorised use of material stored in pre-programmable memory constitutes an examination offence. Please state on your answer book the name and type of machine used.
Statistical functions provided by the calculator may be used provided that you state clearly where you have used them.
The New Cambridge Statistical Tables are provided.
Complete all rough workings in the answer book and cross through any work that is not to be assessed.

Possession of unauthorised material at any time when under examination conditions is an assessment offence and can lead to expulsion from QMUL. Check now to ensure you do not have any notes, mobile phones, smartwatches or unauthorised electronic devices on your person. If you do, raise your hand and give them to an invigilator immediately. It is also an offence to have any writing of any kind on your person, including on your body. If you are found to have hidden unauthorised material elsewhere, including toilets and cloakrooms it shall be treated as being found in your possession. Unauthorised material found on your mobile phone or other electronic device will be considered the same as being in possession of paper notes. A mobile phone that causes a disruption in the exam is also an assessment offence.

Exam papers must not be removed from the examination room.
Examiner(s): B. Bogacka and L. I. Pettit

Question 1. (25 marks)

(a) Show that the Least Squares Estimator $\widehat{\beta}$ of the parameter β in the nointercept model $Y_{i}=\beta x_{i}+\varepsilon_{i}$, where the random errors ε_{i} are identically, independently normally distributed with zero mean and a constant variance σ^{2}, is

$$
\widehat{\beta}=\frac{1}{a} \sum_{i=1}^{n} Y_{i} x_{i}, \quad \text { where } \quad a=\sum_{i=1}^{n} x_{i}^{2} .
$$

(b) Obtain the distribution of $\widehat{\beta}$ including the mean and the variance of the estimator.
(c) Assuming that σ^{2} is known, give a statistic and its distribution for testing the hypothesis $H_{0}: \beta=0$ versus the alternative $H_{1}: \beta \neq 0$.

Question 2. (25 marks)

The winning times (Y, [minutes]) in 1984 for 35 Scottish hill races were collected together with the distance on the map (X_{1}, [miles]) and the total height gained during the route (X_{2}, [feet]). A multiple linear regression analysis was performed and the results are given below.
(a) Briefly comment on the standardized residual plots.

Question 2 continues on the next page.
(b) It occurred that observation 18 was wrongly typed in. After correcting the mistake a new regression analysis was performed on the response transformed by power transformation with $\lambda=0.5$. That is, the assumed model for the independent response variables Y_{i} was

$$
Y_{i}^{\lambda}=\beta_{0}+\beta_{1} x_{1 i}+\beta_{2} x_{2 i}+\varepsilon_{i}, \quad \varepsilon_{i} \sim \mathcal{N}\left(0, \sigma^{2}\right) .
$$

(i) Briefly comment on the new plots of standardized residuals regarding the assumptions of normality, constant variance and linearity of the model.
(ii) Based on the figures shown below, briefly comment on the unusual observations.

Analysis of Variance for Transformed Response					
Source	DF	Adj SS	Adj MS	F-Value	P-Value
Regression	2	261.250	130.625	553.01	0.000
\quad x1	1	71.003	71.003	300.60	0.000
\quad x2	1	24.573	24.573	104.03	0.000
Error	32	7.559	0.236		
\quad Lack-of-Fit	31	7.545	0.243	18.43	0.183
\quad Pure Error	1	0.013	0.013		
Total	34	268.809			

Regression Equation
time^0.5 $=3.107+0.3452 \mathrm{x} 1+0.000693 \mathrm{x} 2$
(c) Based on the numerical output shown above do the following:
(i) Test the hypothesis regarding significance of the regression. Give the formula of the test statistic and explain your notation.
(ii) Obtain an estimate of the expected record in a Scottish hill race where the distance on the map is 5 miles and the total height gained during the route is 1000 feet.
(iii) Interpret in practical terms the meaning of the estimate of β_{1} for a given total height gained during the route.

Question 3. (25 marks)

Technicians measure the total heat flux as part of a solar thermal energy test. An energy engineer wants to determine how total heat flux (Y) is predicted by other variables: insolation $\left(X_{1}\right)$, the position of the focal points in the east $\left(X_{2}\right)$, south $\left(X_{3}\right)$, and north $\left(X_{4}\right)$ directions, and the time of day $\left(X_{5}\right)$. The best subset regression was performed in Minitab and the results are shown below.

```
Best Subsets Regression: Heat Flux versus Insolation, East, ...
Response is Heat Flux
```


(a) Briefly explain the meaning of all the columns in the above numerical output. Give the formulae for the statistics used.
(b) Based on the information in this output suggest the best, from the point of view of prediction, parsimonious subset of the explanatory variables. Briefly justify your choice.

Question 3 continues on the next page.

A regression analysis for the full model was performed and a part of the Minitab numerical output is given below.

Page 6

Question 4. (25 marks)

(a) For each of the following regression models, indicate whether it is a linear regression model (in the parameters β). If it is not, state whether it can be linearized by a suitable transformation of the response and write down the transformed model.
(i) $Y_{i}=\beta_{0}+\beta_{1} x_{1 i}+\beta_{2} \log _{10} x_{2 i}+\beta_{3} x_{1 i}^{2}+\varepsilon_{i}$
(ii) $Y_{i}=\varepsilon_{i} \exp \left(\beta_{0}+\beta_{1} x_{1 i}+\beta_{2} x_{2 i}\right)$
(iii) $Y_{i}=\beta_{0} \exp \left(\beta_{1} x_{1 i}\right)+\varepsilon_{i}$
(iv) $Y_{i}=\left\{1+\exp \left(\beta_{0}+\beta_{1} x_{1 i}+\varepsilon_{i}\right)\right\}^{-1}$
(b) Consider the linear model $\boldsymbol{Y}=\boldsymbol{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}$, where \boldsymbol{Y} denotes the $n \times 1$ vector of responses, \boldsymbol{X} denotes the $n \times p$ design matrix, $\boldsymbol{\beta}$ is the $p \times 1$ vector of unknown parameters and $\boldsymbol{\varepsilon}$ is the $n \times 1$ vector of uncorrelated random errors with zero mean and constant variance σ^{2}.
(i) Show that $\widehat{\boldsymbol{\mu}}=\boldsymbol{X} \widehat{\boldsymbol{\beta}}$, where $\widehat{\boldsymbol{\beta}}$ denotes the least squares estimator of $\boldsymbol{\beta}$, is an unbiased estimator of the expectation of \boldsymbol{Y}.
(ii) Obtain the variance-covariance matrix of $\widehat{\boldsymbol{\mu}}$.
(iii) State the distribution of $\widehat{\boldsymbol{\mu}}$.

End of Paper.

