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Marks are deducted for incorrect grammar/spelling. In a question, or part of a
question, the notation [6ε ] indicates that the answer should not contain any mathe-
matical symbols whatsoever, apart from numerals and the three numbers e, i and π .
In the absence of this notation, mathematical symbols may be used freely. As in
lectures we follow the convention that 0 ∈ N.

Question 1. [25 marks] For each of the following mathematical objects provide
two levels of description: (i) a coarse description, which only identifies the class to
which an object belongs (set, function, etc.) [6ε ]; and (ii) a finer description, which
describes the object in question as accurately as possible [6ε ].

(a) {n ∈ N : 2 | (n+1)}. [5]

(b) (x+ y)2 = x2 +2xy+ y2. [5]

(c)
d2y
dx2 +6

dy
dx
−8y = sinx. [5]

(d)
9

∑
n=0

n2. [5]

(e) {(ai)
∞
i=1 : ai ∈ R, j < k =⇒ a j > ak}. [5]

Question 2. [15 marks] Each of the following ‘proofs’ is incorrect. In each case
say why the proof is wrong.

(a) Statement. Let n ∈ N. If n3 is odd then n is odd.

Proof. If n is odd then n = 2k+1 for some k ∈ N. Thus

n3 = (2k+1)3 = 8k3 +12k2 +6k+1 = 2(4k3 +6k2 +3k)+1

which is odd. [5]

(b) Statement. All even natural numbers are the sum of two primes.

Proof. The number 10 is even, and it is the sum of 3 and 7, both of which are
prime. [5]

(c) Statement. All two by two real matrices are invertible.

Proof. Suppose A =

(
a b
c d

)
. Let A′ =

1
ad−bc

(
d −b
−c a

)
. Then

AA′ =
1

ad−bc

(
ad−bc 0

0 ad−bc

)
=

(
1 0
0 1

)
.

Similarly A′A = I, so A is invertible with inverse A′. [5]
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Question 3. [20 marks] Express each of the following statements with symbols
using at least one quantifier.

(a) The natural number n is divisible by 7. [5]

(b) The function f : R→ R is periodic with period 1. [5]

(c) The function f : A→ B is injective. [5]

(d) The set X ⊆ R has a maximal element. [5]

Question 4. [15 marks] Each of the following statements is equivalent to a
statement with an explicit implication – i.e., a statement of the form

“For all . . . x, if x . . . , then . . . ”

For each of the statements, write down (i) an equivalent statement with an explicit
implication, (ii) its contrapositive, (iii) its converse and (iv) its negation, and
(v) state whether each of these new statements is true or false (justification is not
required).

(a) Every real number is a complex number. [5]

(b) A quadratic equation has at least one real root. [5]

(c) Every invertible matrix is symmetric. [5]

Question 5. [10 marks]

(a) Suppose that P(n) is a statement for each n ∈ N and that we want to prove
that P(n) is true for all n ∈ N. Outline the main steps in the proof method
‘proof by minimal counterexample’. (In the web book this is called the ‘least
counterexample principle.’) [5]

(b) Use this method to prove that every natural number greater than 1 can be
written as a product of primes. [5]

Question 6. [15 marks] Read the text displayed on the next two pages, and then
write a report on it, comprising

• a short title [6ε ]; [2]

• two concise key points [6ε ]; [2]

• a summary (approximately 150 words) of the document [6ε ]. [11]

End of Paper—An appendix of 2 pages follows.
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This page and the next contain the material for Question 6

One of the basic problems of mathematics is solving equations. Using the quadratic
root formula, we know how to find a point (solution) where x2−3x+2 = 0. There
are more complicated formulas to solve cubic or quartic equations (polynomials of
degree 3 or 4), but the Norwegian mathematician Niels Abel showed that no simple
formulas exist to solve polynomials of degree equal to five. There is also no simple
formula for solving equations like sinx = x2, which involve transcendental
functions as well as polynomials or other algebraic functions.

In this extract we study a numerical method, called Newton’s method or the
Newton–Raphson method, which is a technique to approximate the solution to an
equation f (x) = 0. Essentially it uses tangent lines in place of the graph of
y = f (x) near the points where f is zero. (A value of x where f is zero is a root of
the function and a solution of the equation f (x) = 0.)

Procedure for Newton’s Method

The goal of Newton’s method for estimating a solution of an equation f (x) = 0 is
to produce a sequence of approximations that approach the solution. We pick the
first number x0 of the sequence. Then, under favourable circumstances, the method
does the rest by moving step by step toward a point where the graph of f crosses
the x-axis. At each step the method approximates a zero of f with a zero of one of
its linearisations. Here is how it works.

The initial estimate, x0, may be found by graphing or just plain guessing. The
method then uses the tangent to the curve y = f (x) at (x0, f (x0)), to approximate
the curve, and defines x1 to be the point where the tangent meets the x-axis. The
number x1 is usually a better approximation to the solution than is x0. The point x2
where the tangent to the curve at (x1, f (x1)) crosses the x-axis is the next
approximation in the sequence. We continue on, using each approximation to
generate the next, until we are close enough to the root to stop. We can derive a
formula for generating the successive approximations in the following way. Given
the approximation xn, the point-slope equation for the tangent to the curve at
f (xn, f (xn)) is

y = f (xn)+ f ′(xn)(x− xn).

We can find where it crosses the x-axis by setting y = 0

0 = f (xn)+ f ′(xn)(x− xn)

− f (xn)

f ′(xn)
= x− xn

x = xn−
f (xn)

f ′(xn)
.

Here is a summary of Newton’s method:
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(a) Guess a first approximation to a solution of the equation f (x) = 0. A graph
of y = f (x) may help.

(b) Use the first approximation to get a second, the second to get a third, and so
on, using the formula

xn+1 = xn−
f (xn)

f ′(xn)
if f ′(xn) 6= 0.

Convergence of Newton’s Method
In practice, Newton’s method usually converges with impressive speed, but this is
not guaranteed. One way to test convergence is to begin by graphing the function
to estimate a good starting value for x0. You can test that you are getting closer to a
zero of the function by evaluating f (xn) and check that the method is converging
by evaluating xn− xn+1.
Theory does provide some help. A theorem from advanced calculus says that if∣∣∣∣ f (x) f ′′(x)

( f ′(x))2

∣∣∣∣< 1

for all x in an interval about a root r, then the method will converge to r for any
starting value x0 in that interval. Note that this condition is satisfied if the graph of
f is not too horizontal near where it crosses the x-axis.
Newton’s method always converges if, between r and x0, the graph of f is concave
up when f (x0)> 0 and concave down when f (x0)< 0. In most cases, the speed of
the convergence to the root r is expressed by the advanced calculus formula

|xn+1− r|6 max | f ′′|
2min | f ′|

|xn− r|2 = constant · |xn− r|2,

where max and min refer to the maximum and minimum values in an interval
surrounding r. The formula says that the error in step n+1 is no greater than a
constant times the square of the error in step n. This may not seem like much, but
think of what it says. If the constant is less than or equal to 1 and xn− r < 10−3,
then xn+1− r < 10−6. In a single step, the method moves from three decimal places
of accuracy to six, and the number of decimals of accuracy continues to double
with each successive step.

The book goes on to say that this is not always the case – however, that is not part
of the text you are summarising.

End of Appendix.
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