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Marks are deducted for incorrect grammar/spelling. In a question, or part of a
question, the notation [6 ε, n] indicates that the answer should not contain any
mathematical symbols whatsoever, apart from numerals. The integer n—when
present—prescribes the approximate length (in words). In the absence of this no-
tation, mathematical symbols may be used freely.

Question 1 (20 marks). For each of the following mathematical objects provide
two levels of description: (i) a coarse description, which only identifies the class to
which an object belongs (set, function, etc.) [6 ε ]; and (ii) a finer description, which
describes the object in question as accurately as possible [6 ε ].

(a) {m ∈ Z : m ≡ 1 (mod 2) }. [5]

(b) 93 + 103 = 13 + 123. [5]

(c) x2 − 5x + 6. [5]

(d) { (x, y) ∈ R2 : x2 + y2 6 1 }. [5]

Question 2 (20 marks). Express each of the following statements with symbols,
using at least one quantifier.

(a) The function f : A → B is not surjective. [4]

(b) The function f : R → R is odd. [4]

(c) The totally ordered set X has no minimal element. [4]

(d) The equation x2 + 2 = 0 has (at least) two distinct real solutions. [Note: The
fact that this statement is false has no bearing on the question.] [4]

(e) For all integers n at least 3, there is no solution in positive integers x, y, z to
the equation xn + yn = zn. [4]

Question 3 (20 marks). In this question, you may combine words and symbols as
appropriate.

(a) Explain the concepts of the image and the inverse image of a set under a
function. Provide illustrative examples. [8]

(b) Explain the infinite descent method. [6]

(c) Prove, using the method of infinite descent, that for any prime p there are
no positive integers m and n such that n2 = pm2. [6]
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Question 4 (16 marks). Each of the following definitions has faults. (i) Explain
what the faults are; and (ii) write out an appropriate revision.

(a) Let f be the following real function:

f : R → R, f(x, y) =
±
√

x + y

(x + 1)(y + 2)
.

[8]

(b) Let X be a subset of R, and let f(X) be the number of integers in X . Denoting
by |A| the cardinality of the set A, we have:

f : R → Z+, f(X) = |x ∈ X ∩ x ∈ Z|. [8]

Question 5 (6 marks). The following lemma has a defective proof.

LEMMA. There is an invertible 2 × 2 matrix whose entries lie in Z2. (Recall that
Z2 = Z/2Z is the set of integers modulo 2.)
PROOF. For

A =

(
a b + 1
b a + 1

)
has determinant a2 + a− b2 − b 6= 0, so done. �

(a) Explain the fault(s); and [4]

(b) Give a correct proof. [2]

Question 6 (18 marks). Read the text displayed on the next two pages, and then
write a report on it, comprising

• a short title [6 ε ]; [2]

• two/three concise key points [6 ε ]; [4]

• a summary of the document [6 ε, 175]. [12]

End of Paper—An appendix of 2 pages follows.
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This page and the next contain material for Question 6.

Given two integers d and n, we say that d divides n and write d | n if there exists an
integer q such that n = dq. Since for all n we have n = 1·n, it follows that 1 and
n divide n, and since 0 = d·0, we see that any integer divides 0. Also if d divides
n, so does −d. For this reason, when dealing with divisibility it is customary to
consider the positive divisors only. A non-trivial divisor d of n is a divisor that is
neither equal to 1 nor to n.

The identity n = d(n/d) shows that if d divides n, so does n/d (because n/d is
an integer), and vice-versa. So divisors come in pairs, and therefore the number of
divisors of n is even, unless d and n/d happen to coincide, giving n = d2, a square.
Thus an integer is a square precisely when it has an odd number of divisors.

A positive integer n greater than 1 is said to be prime if it has only two divisors:
1 and n (or, equivalently, if it has no non-trivial divisor). If this is not the case, we
say that n is composite. Note that 1 is not considered to be either prime (see below)
or composite. The following basic result of the arithmetic of the integers is known
as the Fundamental Theorem of Arithmetic.

Theorem. Every integer n greater than one can be written as a product of the form

n = pe1
1 ·pe2

2 · · · · ·p
ek
k . (1)

where the pi are distinct primes and the exponents ei are positive integers. The
factorisation (1) is unique up to the ordering of the factors.

The primes pi appearing in (1) are called the prime divisors of n. You can see
why 1 is not considered prime: if it were, then we could insert the extra factor 1 in
the product (1), to obtain a different decomposition of n into primes.

Knowledge of the prime factorisation provides useful information. For instance,
when constructing the divisors of n, we find from (1) that there are ei + 1 possible
choices for each exponent ei (from 0 to ei). So the number d(n) of divisors of n is
given by

d(n) = (e1 + 1)(e2 + 1) · · · (ek + 1). (2)

If n is a square, then each exponent ei is even, that is, ei + 1 is odd. Then the above
equation shows that d(n) is odd, in agreement with the observation made above.

In fact, we can generalise the above, and for m ∈ N0 and n a positive integer, we
can define σm(n) by

σm(n) :=
∑

d>0,d|n

dm.

Since d0 = 1 for all d, we observe that σ0(n) = d(n) for all n. (We also write σ(n)
instead of σ1(n) for the sum of all (positive) divisors of n, including 1 and n.) If p
is prime and e ∈ N0 then using (1) gives us

σm(pe) = 1 + pm + p2m + · · ·+ pem,
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and so σ0(p
e) = e + 1 (as above) and σm(pe) = p(e+1)m−1

pm−1
if m > 0. A reasonably

straightforward argument generalises the result of (2) to all m ∈ N0, namely that

σm(n) = σm(pe1
1 ) · σm(pe1

1 ) · · · · · σm(pek
k ),

where n is as in (1). In a similar vein, we also have σm(n1n2) = σm(n1)σm(n2)
whenever gcd(n1, n2) = 1. We thus have a formula for σm(n), and this is useful
for the study of certain phenomena, such as perfect numbers (where n is said to be
perfect if σ(n) = 2n).

End of Appendix.
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