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Marks are deducted for incorrect grammar/spelling. In a question, or part of

a question, the notation [ 6 ǫ, n] indicates that the answer should not contain

any mathematical symbols whatsoever, apart from numerals. The integer

n —when present— prescribes the approximate length (in words). In the

absence of this notation, mathematical symbols may be used freely.
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Question 1. [Marks: (5, 5, 5, 5, 5), (4, 5, 5, 5), (6)]

(a) For each of the following mathematical objects, provide two levels of

description: 1) a coarse description, which only identifies the class to

which the object belongs (set, function, etc.); 2) a finer description,

which characterises the object in question as accurately as possible.

[ 6 ǫ ]

i) {(x, y) ∈ R
2 : x2 = y2}

ii)
∑

n>0

xn2

iii) (x ∈ A) ∧ (x 6∈ B)

iv) ((a1), (a1, a2), (a1, a2, a3), . . .)

v) Z ∩ f−1(Z).

(b) Express each of the following statements with symbols, using at least

one quantifier.

i) The real functions f and g are distinct.

ii) The sequence (ak) has precisely one zero term.

iii) The real function f is not bounded.

iv) Sufficiently close to the origin, the set X has no rational points.

(c) Consider Goldbach’s conjecture:

Every even integer greater than 2 can be written as the sum

of two primes.

Write the contrapositive, the converse, and the negation of this state-

ment. [ 6 ǫ ]
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Question 2. [Marks: 8,8] Each of the following definitions has

faults. i) Explain what they are; ii) write out an appropriate revision.

(a) Let X, Y be sets and let f, g : X 7→ Y be functions. We define the

function f/g as follows:

f/g : X 7→ Y x 7→ f(x)

g(x)
.

(b) Let l be a line in the Cartesian plane, let P, Q ∈ R
2 be the points of

intersection of l with the coordinate axes, and let F (l) : R
2 → R be

the function that gives the length of the segment joining P and Q.

Question 3. [Marks: 8,8] Explain the following concepts as

clearly as you can, in approximately half a page. You may combine words

and symbols, and use any material that will assist the reader (examples,

theorems, etc.).

(a) Predicate.

(b) Infinite descent.

Question 4. [Marks: 2,4,12]

Read the text displayed on the next two pages. Then write a report on it,

comprising

i) a short title [ 6 ǫ ];

ii) two concise key points [ 6 ǫ ];

iii) a summary of the document [ 6 ǫ, 150].

End of paper. An appendix of 2 pages follows.
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THIS PAGE AND THE NEXT PAGE CONTAIN MATERIAL FOR QUES-

TION 4.

We wish to characterise the relative rate of growth of functions, as their

argument gets large. Let f and g be real functions. We write f(x) ≪ g(x)

to mean that

lim
x→∞

f(x)

g(x)
= 0

and we say that g dominates f (or that g has a higher growth rate than f) as

x goes to infinity. This definition requires that g(x) 6= 0 for all sufficiently

large x; in what follows we shall assume that this is the case.

Let us begin by comparing powers. For any real numbers a, b with b > 0,

we have xa ≪ xa+b. Indeed:

lim
x→∞

xa

xa+b
= lim

x→∞

1

xb
= 0.

Applying L’Hôpital’s Rule, we verify that

lim
x→∞

log x

xa
= lim

x→∞

1

axa
= 0, a > 0

which shows that if a is positive, then log(x) ≪ xa. Likewise, any exponen-

tial functions (such as 2x) grows more rapidly than any power (such as x5).

Indeed, let a, b ∈ R with b > 0. Repeated applications of Hôpital’s Rule give

lim
x→∞

xa

bx
= lim

x→∞

axa−1

bx log b
= lim

x→∞

a(a − 1)xa−2

bx(log b)2
= · · ·

Since the exponent at numerator will eventually be zero or negative, we

conclude that limx→∞ xa/bx = 0, that is, xa ≪ bx.

Finally, if g(x) → ∞, then the following holds:

f(x) ≪ g(x) ⇒ ef(x) ≪ eg(x). (1)

To see this, we write
ef(x)

eg(x)
= ef(x)−g(x)

and we must prove that f(x) − g(x) → −∞.

Assume that g(x) dominates f(x), and that g(x) tends to infinity. Then,

choosing ǫ such that 0 < ǫ < 1, for all sufficiently large x we have f(x) ≤

5



|f(x)| < ǫ|g(x)| = ǫg(x) (g is eventually positive). Thus f(x) − g(x) <

g(x)(ǫ − 1) and since g(x) → ∞, we have f(x) − g(x) → −∞, as desired.

Note that the converse of implication (1) is false: we have ex ≪ e2x, but

x 6≪ 2x.

The results just established, together with the transitivity of the ≪ relation

(if f(x) ≪ g(x) and g(x) ≪ h(x), then f(x) ≪ h(x)), allow us to order

functions according to their growth rate. Let a, b be real numbers with

0 < a < 1 < b. We find:

1 ≪ log(x) ≪ log(x)b ≪ xa ≪ xb ≪ xlog(x) ≪ bx ≪ xx. (2)

Let us apply the ≪ relation to the evaluation of limits. Consider the limit

C = lim
x→∞

f(x) + f1(x) + · · · + fn(x)

g(x) + g1(x) + · · · + gm(x)

where we assume that limx→∞ f(x)/g(x) = c, for some c, and that the

functions f1, . . . , fn and g1, . . . , gm satisfy the conditions fk(x) ≪ f(x) and

gk(x) ≪ g(x) for all k. Collecting f(x) at numerator and g(x) at denomi-

nator, we obtain:

C = lim
x→∞

f(x)

g(x)





1 + f1(x)
f(x) + · · · + fn(x)

f(x)

1 + g1(x)
g(x) + · · · + gm(x)

g(x)



 = lim
x→∞

f(x)

g(x)
· 1

1
= c.

We see that the limit is determined solely by the dominant terms. For

example, using (2) and the relation sin(x) ≪ log(x) we have:

lim
x→∞

x(log x)2 − x sin(x) +
4
√

x3

x
√

x + log(x)
= lim

x→∞

x(log x)2

x
√

x
= lim

x→∞

(log x)2√
x

= 0.

End of appendix.
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