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Note that there is a compendium of definitions and formulae in the appendix, which you
are free to use without comment.

Question 1. [12 marks] Consider the following parametric curve:

γ :
(
0, 4

√
π
) → R2, γ(t) = (cos(t2), sin(t2)).

(a) Show that γ is regular. [4]

(b) Compute the signed curvature of γ at each of its points. [5]

(c) Without resorting to direct computations, explain why the arc length of γ is 16π. [3]

Question 2. [14 marks] Consider the following parametric curve:

γ : R → R3, γ(t) = (et, t, t2).

(a) Show that γ is regular. [4]

(b) Compute the curvature of γ at each of its points. [5]

(c) Compute the torsion of γ at each of its points. [5]

Question 3. [10 marks] Let C denote the unit circle about the origin in R2, and
consider the following two parametrisations of C:

γ : R → R2, γ(t) = (cos t, sin t),
λ : R → R2, λ(t) = (sin t, cos t).

(a) Do γ and λ have the same unsigned curvature at corresponding points (that is, at
common points in R2)? Briefly justify your answer without resorting to
computations. [3]

(b) Do γ and λ have the same tangent line at corresponding points (that is, at
common points in R2)? Briefly justify your answer without resorting to
computations. [3]

(c) Find the tangent line to C at the point

p =

(
1√
2
,
1√
2

)
. [4]
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Question 4. [17 marks]

(a) Give, through drawings, a sequence of Reidemeister moves that transforms the
knot diagram (i) below into the knot diagram (ii). Indicate clearly which
Reidemeister move is being used, and where it is being applied.

[5]

(b) Show, using only the definition of the Kauffman bracket (and not the rules for
how the bracket is affected by Reidemeister moves), that

B
(

, x
)
= −x3. [4]

(c) Suppose you have a knot K. Also, suppose Alice tells you that K is achiral, while
Bob tells you that its Jones polynomial satisfies

J(K, t) = t2 + t−1.

Explain how you can conclude that at least one of them is lying. [4]

(d) Give an example of a link diagram D such that its Kauffman bracket satisfies

B(D, x) = −(x2 + x−2)5.

Briefly justify your answer. [4]

Question 5. [17 marks] Let f : R2 → R be a smooth function, and let S be defined
as the image of the parametric surface

σ : R2 → R3, σ(u, v) = (u, v, f(u, v)).

Give all answers below in terms of the function f.

(a) Find the tangent plane to S at each point σ(u, v) ∈ S. [4]

(b) Compute the first fundamental form FIσ with respect to σ. [4]

(c) Find the unit normals to S at every point σ(u, v) ∈ S. [4]

(d) Compute the second fundamental form FIIσ with respect to σ. [5]

© Queen Mary University of London (2018) Turn Over



Page 4 MTH5109 (2018)

Question 6. [21 marks] Let S be defined as the image of the parametric surface

σ : R× (0, 1) → R3, σ(u, v) = (v cosu, v sinu, 1− v).

(a) Sketch S. In addition, indicate some curves of constant u and v on your sketch. [4]

(b) Argue from the form of the curves in your answer to (a) (and without doing any
further computations) that the Gauss curvature of S vanishes everywhere. [4]

(c) Compute the second fundamental form FIIσ with respect to σ. [6]

(d) Compute the Weingarten matrix Wσ with respect to σ. [4]

(e) Compute the principal curvatures of S at any p = σ(u, v) ∈ S with respect to σ.
In particular, confirm that the Gauss curvature of S vanishes everywhere. [3]

Question 7. [9 marks] Consider the surface S given by the following drawing:

(a) Find the surface integral ∫
S

KdA,

where K is the Gauss curvature of S. [3]

(b) Use part (a) to conclude that there is some point of S at which the Gauss
curvature must be strictly negative. [3]

(c) Show that there is some point of S at which one of the principal curvatures must
be strictly negative. [3]

End of Paper – An appendix of 3 pages follows.

© Queen Mary University of London (2018)



MTH5109 (2018) Page 5

Partial list of definitions and formulas

• Parametric curve: Smooth function γ : I → Rn, with I an open interval.

• A parametric curve γ : I → Rn is regular iff |γ ′(t)| ̸= 0 for every t ∈ I.

• Curve: Roughly, a parametric curve, except reparametrisations are considered as the same.

• Oriented curve: Roughly, a curve with a choice of orientation.

• Tangent line of a parametric curve γ : I → Rn:
Using tangent vectors: Tγ(t) = {sγ ′(t)|γ(t) | s ∈ R},

As a set of points: Tγ(t) = {γ(t) + sγ ′(t) | s ∈ R}.

• Path integral of a curve C, represented by a parametric curve γ : (a, b) → Rn:∫
C

F ds =

∫b
a

F(γ(t))|γ ′(t)|dt.

• Arc length of a curve C:

L(C) =

∫
C

1 ds.

• Curvature of a regular parametric curve γ, at γ(t):

κ|γ(t) =
1

|γ ′(t)|

∣∣∣∣ ddt
[
γ ′(t)

|γ ′(t)|

]∣∣∣∣ .

• Formulas for curvature and signed curvature, respectively, for a regular plane curve γ:

κ|γ =
|x ′y ′′ − y ′x ′′|

|γ ′|3
, κs|γ =

x ′y ′′ − y ′x ′′

|γ ′|3
, γ(t) = (x(t), y(t)).

• Angle change formula for a plane curve C, and the winding number of a closed plane curve C:

∆θ =

∫
C

κsds, N(C) =
1

2π

∫
C

κsds.

• Formula for curvature and torsion, respectively, of a regular space curve γ:

κ|γ =
|γ ′ × γ ′′|

|γ ′|3
, τ|γ =

(γ ′ × γ ′′) · γ ′′′

|γ ′ × γ ′′|2
(when κ|γ ̸= 0).

• Knots: Roughly, simple closed space curves (or knot diagrams), except that knot-equivalent
curves (or diagrams) are considered to be the same knot.

• Reidemeister moves:

.

• Reidemeister theorem: Two knot diagrams are knot-equivalent if and only if one can be
transformed into the other via a sequence of Reidemeister moves.

• A knot is tricolourable iff its segments can be 3-coloured so that (i) all three colours are used
somewhere, and (ii) at each crossing, either one or all three colours are used.

• A knot is chiral iff its mirror image is the same knot, and achiral iff it is not chiral.

• Writhe of a knot diagram: sum of the signatures of all its crossings, where

.
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• Kauffman bracket of a link diagram:

.

• The Kauffman bracket is unchanged under Type II and III Reidemeister moves, while

.

• Jones polynomial of a knot:

J(K, t) =
(
−t

1
4

)3·W(K)

B
(
K, t

1
4

)
, W = writhe.

• If K is a knot, and K̃ its mirror image, then
J(K̃, t) = J(K, t−1).

• Parametric surface: Smooth function σ : U → Rn, with U ⊆ R2 being open (i.e. has no
boundary points) and connected (i.e. any p, q ∈ U joined by a curve in U).

• A parametric surface σ : U → Rn is regular iff ∂uσ(u, v) and ∂vσ(u, v) are linearly independent
for all (u, v) ∈ U. When n = 3, then σ is regular if and only if |∂uσ× ∂vσ| ̸= 0 everywhere.

• Surface: Roughly, a 2-dimensional object created by gluing together parametric surfaces (and
without allowing self-intersections).

• For a surface S ⊆ Rn, a parametrisation σ of S, and a point p ∈ σ(u0, v0) ∈ S, we define the
tangent plane at p of S as follows:

Using tangent vectors: TpS = {a · ∂uσ(u0, v0)|p + b · ∂vσ(u0, v0)|p | a, b ∈ R},
As a set of points: TpS = {p + a · ∂uσ(u0, v0) + b · ∂vσ(u0, v0) | a, b ∈ R}.

• Given a surface S ⊆ R3 and p ∈ S, we say that N|p (where N ∈ R3) is a unit normal to S at p
iff N|p is perpendicular to TpS, and |N| = 1.

• Formula for unit normals to S ⊆ R3 at p ∈ σ(u0, v0) ∈ S (where σ is a parametrisation of S):

±
[
∂uσ(u0, v0)× ∂vσ(u0, v0)

|∂uσ(u0, v0)× ∂vσ(u0, v0)|

]∣∣∣∣
p

.

• A surface S ⊆ R3 is orientable iff one can choose a unit normal N|p at each p ∈ S in a way
such that N|p varies smoothly with p.

• The first fundamental form of a surface S ⊆ Rn with respect to a parametrisation σ:

FIσ(u, v) =

[
∂uσ(u, v) · ∂uσ(u, v) ∂uσ(u, v) · ∂vσ(u, v)
∂vσ(u, v) · ∂uσ(u, v) ∂vσ(u, v) · ∂vσ(u, v)

]
.

• For a surface S ⊆ Rn and injective parametrisation σ : U → S, the surface area of σ(U) of σ is

A(σ(U)) =

∫∫
U

√
FIσ(u, v)dudv.

Moreover, when n = 3, √
FIσ(u, v) = |∂uσ(u, v)× ∂vσ(u, v)|.

• Given a surface S ⊆ Rn, an injective parametrisation σ : U → S, and a smooth function
G : S → R, we define the surface integral of G over σ(U) by

A(σ(U)) =

∫∫
U

G(σ(u, v))
√
FIσ(u, v)dudv.
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• Second fundamental form of a surface S ⊆ R3 with respect to a parametrisation σ:

FIIσ (u, v) =

[
∂uuσ(u, v) ·Nσ(u, v) ∂uvσ(u, v) ·Nσ(u, v)
∂vuσ(u, v) ·Nσ(u, v) ∂vvσ(u, v) ·Nσ(u, v)

]
,

Nσ(u, v) =
∂uσ(u, v)× ∂vσ(u, v)

|∂uσ(u, v)× ∂vσ(u, v)|
.

• Weingarten matrix of a surface S ⊆ R3 with respect to a parametrisation σ:
Wσ(u, v) = FIσ(u, v)

−1FIIσ (u, v).

• Given a surface S ⊆ R3, a parametrisation σ of S, and a point p = σ(u, v) ∈ S:
– Principal curvatures of S at p (with respect to σ): eigenvalues κ1|p, κ2|p of Wσ(u, v).
– Mean curvature of S at p (with respect to σ):

H|p =
1

2
(κ1|p + κ2|p) =

1

2
trWσ(u, v).

– Gauss curvature of S at p:
K|p = κ1|p · κ2|p = detWσ(u, v).

• Additional formulas for principal curvatures:

κ1|p, κ2|p = H|p ±
√
(H|p)2 −K|p.

• Gauss–Bonnet Theorem: Let S ⊆ R3 be a compact surface. Then,∫
S

KdA = 4π(1− gS),

where K is the Gauss curvature of S, and gS is the genus of S.

End of Appendix.
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