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Question 1. [17 marks]

(a) List three different knot invariants. [3]

(b) Is the knot below tricolourable? Justify your answer. [4]

(c) Compute the Kauffman bracket of the following knot diagram:

You may use without proof the following identities,

B( , x) = x8 − x4 + 1− x−4 + x−8,

B( , x) = −x4 − x−4,

where B denotes the Kauffman bracket. (It may be simplest to work

first with the crossing at the top centre of the given diagram.) [6]

(d) Suppose a knot K has Jones polynomial

J(K, t) = t2 − t+ 2− 2t−1 + t−2 − t−3 + t−4.

Is K chiral? Justify your answer. [4]
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Question 2. [16 marks]

(a) For the parametrised curve

γ : R→ R2, γ(t) =

(
cos t,

1

2
sin(2t)

)
,

compute its signed curvature at every point. [4]

(b) For the parametrised curve

γ : R→ R3, γ(t) =

(
t,

1

2
t2, t

)
,

compute its torsion at each point. [4]

(c) Find an arc length reparametrisation of the parametrised curve

γ : (0, π)→ R2, γ(t) = (2 cos(2t), 2 sin(2t)).

What is the domain of this reparametrisation? [4]

(d) Recall that the helix

γ : R→ R3, γ(t) = (cos t, sin t, t)

satisfies the following:

γ(0) = (1, 0, 0), γ′(0) = (0, 1, 1), κ = τ =
1

2
.

Is there another different curve λ : R→ R3 that also satisfies

λ(0) = (1, 0, 0), λ′(0) = (0, 1, 1), κ = τ =
1

2
?

Explain your answer. [4]
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Question 3. [17 marks] Consider the surface Q that is defined as the

image of a single parametrisation

σ : (0, 3)× R→ R3, σ(u, v) = ((3− u) cos v, (3− u) sin v, u).

(a) Show that σ is regular. [4]

(b) Sketch Q, and indicate clearly some curves of constant u as well as

some curves of constant v. [4]

(c) Show that the first fundamental form of Q with respect to σ is

F σ
I =

[
2 0

0 (3− u)2

]
. [3]

(d) Find the surface area of Q. [6]

Question 4. [15 marks] Let Q and σ be as in Question 3.

(a) Show that the second fundamental form of Q with respect to σ is

F σ
II =

[
0 0

0 3−u√
2

]
. [7]

(b) Show that the Weingarten matrix of Q with respect to σ is given by

W σ =

[
0 0

0 1√
2(3−u)

]
. [4]

(c) Compute the mean and Gauss curvatures of Q. [4]
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Question 5. [14 marks]

(a) Suppose S ⊆ R3 is a surface, with γ a curve on S. Give two ways that

you can check that γ is a geodesic on S. [4]

(b) For a surface S ⊆ R3 and a parametrisation σ of S, state the geodesic

equations on S with respect to σ. Be sure to define any functions that

you may have written down. [4]

(c) Let T be the torus parametrised by

σ : R2 → R3, σ(u, v) = ((2 + cosu) cos v, (2 + cosu) sin v, sinu),

and consider the parametrised curve

γ : R→ T , γ(t) = (3 cos t, 3 sin t, 0).

Show that γ is a geodesic on T . [6]

Question 6. [10 marks] Consider the cylinder

C = {(x, y, z) ∈ R3 | x2 + y2 = 4},

which can be parametrised by

σ : R2 → R3, σ(u, v) = (2 cosu, 2 sinu, v).

(a) Compute the unsigned normal curvature in C of the curve

γ : R→ C, γ(t) = (2 cos t, 2 sin t, 2 sin t). [7]

(b) How are the principal curvatures κ1 and κ2 and the principal directions

~v1, ~v2 of C related to the signed normal curvature κn,s of γ via Euler’s

theorem? (You do not have to state Euler’s theorem in its entirely,

just the formula relating the above quantities.) [3]
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Question 7. [11 marks]

(a) Consider the Möbius strip M. What problem would you encounter if

you tried to define the principal curvatures smoothly on M? [3]

(b) Let X and Y be the plane and paraboloid given by

X = {(x, y, z) ∈ R3 | z = 0}, Y = {(x, y, z) ∈ R3 | z = x2 + y2}.

Can X be transformed into Y without “stretching” (i.e., altering

distances and angles)? Explain why or why not. [4]

(c) For the surfaces S1, S2 below, use the Gauss–Bonnet theorem to find∫
Si

KG,idA, 1 ≤ i ≤ 2,

where KG,i denotes the Gauss curvature of Si. [4]

End of Paper.
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