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Question 1.

(a) State the Reidemeister theorem and describe the three types of moves which
appear in the statement. [2]

(b) State the three main properties (axioms) of the Kauffman bracket B(x) of a
link diagram. [2]

(c) State how B(x) behaves under Reidemeister moves I, II, III. [4]

(d) Prove the result of (c) regarding the move I. [4]

(e) Use the results of parts (b) and (c) to compute the Kauffman bracket B(x) of
the link digram shown in Figure 1: [3]

Figure 1: A link diagram.

Question 2.

(a) State the formula for the arc length of a parametrised plane curve γ(t) =
(x(t), y(t)) where t ∈ [α, β]. [2]

(b) Compute the arc length of the catenary curve

γ(t) =

(
t, a · cosh

(
t

a

))
for t ∈ [0, b]; here a > 0 and b > 0 are two positive constants. [5]

(c) State the formula for the curvature of a regular plane curve. [2]

(d) Compute the curvature of the catenary curve. [6]
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Question 3.

(a) State the formula for curvature k(t) and for torsion τ(t) of a regular space
curve given in arbitrary parametrization. [2]

(b) Compute the curvature and torsion of the curve γ(t) = (3t− t3, 3t2, 3t+ t3). [11]

(c) Is the curve in (b) planar? In other words, does it lie entirely in a plane P ⊂
R3? [2]

Question 4. Consider the surface patch

σ = (u cos v, u sin v, v), −1 < u < 1, 0 < v < 2π.

(a) Compute the First Fundamental Form FI of this surface patch. [4]

(b) Compute the Second Fundamental Form FII and the mean curvature of this
surface patch. [8]

(c) Sketch the surface patch. (Hint: what do we get if we fix v?) [3]

Question 5. Consider the curve γ(t) = σ(u(t), v(t)) on a surface patch σ.

(a) Write down (without proof) the geodesic equations for γ(t). [4]

(b) Let γ(t) = σ(u(t), v(t)) be a curve on the surface patch σ = (u cos v, u sin v, v)
of Question 4. Show that if γ is unit-speed, then u̇2 + (1 + u2)v̇2 = 1. Here
dot denotes d

dt
. [3]

(c) Show that if γ is a geodesic on σ, then v̇ = a
1+u2 , where a is a constant. [5]

(d) What are the geodesics corresponding to a = 0? Describe exactly what they
look like. [4]
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Question 6. Let γ be a curve on a surface patch σ.

(a) Write down the definitions of the geodesic curvature κg and the normal cur-
vature κn of γ. State Euler’s formula for κn. [5]

(b) Let γ be a unit-speed curve on the unit sphere. Show that the normal curvature
of γ is equal to 1 at every point. [4]

(c) Let σ(u, v) be a surface patch such that for every unit-speed curve γ on σ the
normal curvature κn of γ is equal to 1 at every point. Prove that the Gauss
curvature KG is equal to 1 at every point on σ. (Hint: you may use Euler’s
formula.) [4]

Question 7.

(a) State (without proof) the Gauss-Bonnet Theorem for a curvilinear polygon on
a surface. [5]

(b) Let S be a surface whose Gauss curvature is everywhere equal to −1. Con-
sider a curvilinear triangle on this surface whose edges have lengths a, b and c,
and whose interior angles are α, β and γ. Suppose that the geodesic curvature
of each edge is equal to 1 at every point. Show that the area of the interior of
this triangle is equal to [6]

a+ b+ c− α− β − γ + π.

End of Paper.
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