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Question 1

(a) Give an example of a knot that is tricolourable, justifying your answer. [4]

(b) Use tricolourability to prove that the knot you wrote down in part (a) is not
equal to the trivial circle knot, explaining your logic. [4]

Question 2

(a) Compute the Kauffman bracket B(x) of the knot diagram

You may assume without proof that

B( ) =−x4− x−4

and you may refer without proof to the behaviour of B under a Reidemeister
move of type I. [6]

(b) Compute the Jones invariant J(t) of the knot depicted in part (a). [5]

(c) Use results about J(t) from lectures to prove that the knot in part (a) is chiral. [3]
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Question 3

(a) State the Serret-Frenet equations for the orthonormal triple (t,n,b) associated
to a curve γ in R3, including definitions of t,n,b in terms of the curve. [5]

(b) Using part (a), prove that if a regular curve has zero torsion then the curve lies
in a plane. You may assume that the curve has non-vanishing curvature and
you may wish to look at d

dt (b · γ). [6]

Question 4

(a) Sketch the closed curve γ(t)= (cos t,esin t) in the x−y-plane. (Hint: compared
to a circle, the y-coordinate is exponentiated). [5]

(b) State the accumulated angular change in direction on going around the curve
in part (a). [2]

(c) Compute the signed curvature KS of the curve in part (a). [6]

(d) Combining the above with a result from lectures, or otherwise, prove that∫ 2π

0

1− sin t cos2 t
sin2 t + e2sin t cos2 t

esin tdt = 2π.

[5]

Question 5

(a) Sketch the surface of revolution with surface patch

σ(u,v) = ( f (u)cosv, f (u)sinv,g(u)), 0 < u < 1, 0 < v < 2π,

f (u) = u2, g(u) = u
√

1−u2 + arcsinu,

where 0< arcsinu< π

2 . You may assume without proof that g′(u) = 2
√

1−u2

and hence that g(u) increases with u. [10]

(b) Compute the 1st and 2nd fundamental forms FI,FII for the surface in part (a). [10]
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Question 6

(a) Show that a unit speed geodesic γ(t) = σ(u(t),v(t)) in the surface of revolu-
tion in Question 5 obeys

u̇2 =
1
4

(
1− Ω2

u4

)
.

You may assume that Ω = f 2v̇ is constant along the geodesic, where f is as in
Question 5, and you may wish to use FI obtained there. [6]

(b) Suppose in part (a) that a geodesic has Ω = 1
4 and u̇ < 0, v̇ > 0 at an initial

point where u is close to 1 and v is close to 0. Sketch what the geodesic looks
like on the surface and calculate the closest horizontal distance it comes to
from the z-axis. [5]

Question 7

(a) State the Gauss-Bonnet theorem for a simple closed curve γ in an orientable
surface S. [5]

(b) Let γ(t) = (acos t,asin t,−
√

1−a2) be a horizontal circle of radius a, 0 <
a 6 1, in the lower part of a unit sphere. Indicate γ and int(γ) on a sketch and
show that

Area(int(γ)) = (1−
√

1−a2)2π.

You may assume that
√

det(FI) = cosu in the standard surface patch used
in lectures (where −π

2 < u < π

2 is the angle of lift from the x− y plane and
sinu =−

√
1−a2 for a point on γ). [6]

(c) Use parts (a) and (b) to deduce the value of the geodesic curvature Kg as a
function of a. You may assume that the sphere has Gauss curvature KG = 1
and that Kg has the same value at all points of γ . [5]

(d) For which value of a is γ in part (b) a geodesic? Justify your answer. [2]

End of Paper
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