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Question 1 [25 marks].

(a) Let f : (a, b)→ R be a real valued function. State the definition for f to be
differentiable at a point x ∈ (a, b). [5]

(b) Consider the following function, g : (0,∞)→ R given by

g(x) =
√
x.

Using the definition of derivative, compute the derivative of g. [5]

(c) Let f : R→ R be the function given by

f(x) =

{
x2 sin

(
1
x2

)
, x > 0,

0, x ≤ 0.

Find where f is differentiable? (Fully explain your answer.) [5]

(d) State the Mean Value Theorem. [5]

(e) Let f : R→ R be a differentiable function. Show that if |f ′(c)| ≤M for all c ∈ R
then for all x, y ∈ R we have

|f(x)− f(y)| ≤M |x− y|. [5]

Question 2 [25 marks].

(a) State the definition of a uniformly continuous function. [5]

(b) Prove that f(x) = 1
x

is uniformly continuous on [a, 2], 0 < a < 2. [5]

(c) Let fn(x) = 1
n
xn2

, x ∈ [−1, 1].

(i) For each x ∈ [−1, 1] compute limn→∞ fn(x). [5]

(ii) For each x ∈ [−1, 1] let f(x) = limn→∞ fn(x). Does fn converge to f
uniformly on [−1, 1]? Justify your answer. [5]

(iii) Show that the following limit exists and compute its value,

lim
n→∞

∫ 1

−1
fn(x)dx.

[5]
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Question 3 [25 marks].

(a) State the Inverse Function Theorem. [5]

(b) Let f(x) = exp(x), x ∈ R. Show that f is invertible and compute the derivative of
f−1(y) in terms of y. [5]

(c) Let h : R\{−1} → R be the function given by

h(x) =
1

1 + x
.

Using any correct method, compute the Taylor series of h about x = 0 together
with its interval of convergence. [7]

(d) Compute the antiderivatives of h defined above. [2]

(e) Using part (d) above give a Taylor expansion for log(1 + x) about x = 0 together
with its interval of convergence. [6]

Question 4 [25 marks].

(a) State the Mean Value Theorem for Integrals. [5]

(b) Consider the function g : [0, 1]→ R, g(x) = x.

(i) Show that g is Riemann integrable. [2]

(ii) Compute the upper sum U(g, Pn) of g for the equidistant partition

Pn =

{
x0 = 0, · · · , xk =

k

n
, · · · , xn = 1

}
. [6]

(
You may use the formula,

∑n
k=1 k = n(n+1)

2
, or any other correct method.

)
(iii) Using part (i) and (ii) compute the integral

∫ 1

0
g(x)dx. [2]

(c) Let f : [a, b]→ R denote a bounded function. Suppose F,G are antiderivatives of
f . What is the relation between F and G? [5]

(d) Let f : R→ R and denote by H the following function,

H(x) =

∫ x+1

x−1
f(t)dt.

Show that H is differentiable and find its derivative. [5]

End of Paper.
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