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Question 1. [25 marks]

(a) Let f : (a, b) → R be a real valued function. State the definition for f to be
differentiable at a point x ∈ (a, b). [5]

(b) Consider the following function, g : R → R, given by

g(x) = x3.

Using the definition of derivative, compute the derivative of g. [5]

(c) Consider the following function, h : R → R,

h(x) =
�

0, x ≤ 0,
e−1/x, x > 0.

Show that h is differentiable on R. [5]

(d) Compute the following limits (with full justification) [5]

(i) limx→0

√
1+2x−

√
1−x

x ,

(ii) limx→0
exp(x)−1−x

x2 .

(e) Consider a differentiable function f : R → R such that

f �(x) = f (x) ∀x ∈ R

and f (0) = 1. Using the property above, show that f (x) f (−x) = 1 and that
f (x) �= 0 for all x ∈ R. [5]

Question 2. [25 marks]

(a) State the definition of a uniformly continuous function. [5]

(b) Prove that f (x) = x2 is uniformly continuous on [0, 1]. [5]

(c) State the Mean Value Theorem. [5]

(d) Suppose that f : [a, b] → R is continuous on [a, b] and differentiable on (a, b).
Show that if f �(x) < 0 for all x ∈ (a, b) then f is strictly decreasing. Is the
converse statement true? If so, prove the statement, if not, give a
counterexample and show that it is a counterexample. [10]
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Question 3. [25 marks]

(a) State Taylor’s Theorem. [5]

(b) Let h : R\{1} → R be the function given by

h(x) =
1

1 − x
.

(i) Using any correct method, show that the Taylor series of h about x = 0 is
given by

∞

∑
k=0

xk

and find its radius of convergence. [7]

(ii) Compute the derivative of h. [2]

(iii) Hence, using (ii) or otherwise, find the Taylor series and radius of
convergence for

g(x) =
1

(1 − x)2

about x = 0. [6]

(c) Let f (x) be twice differentiable in the interval [a, b] and suppose that f ��(x) ≥ 0
for every value of x. If x0 is any point in the interval, the tangent line at x0 is
given by y0 = f (x0) + f �(x0)(x − x0). Show that f always lies above its tangent
line, that is f (x)− y0 ≥ 0 for any x. [5]
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Question 4. [25 marks]

(a) State the Fundamental Theorem of Calculus. [5]

(b) Let f : [a, b] → R denote a continuous function and let F, G be antiderivatives of
f . Show that F and G differ by a constant. [5]

(c) Consider the functions fα(x) = xα for x ∈ (0, 1] and α ∈ R. Find the
anti-derivatives of fα and compute

� 1
0 fα(x)dx for the values that integral exists

(give full justification). [5]

(d) Consider the function h : [0, 1] → R, h(x) = x.

(i) Show that h is Riemann integrable. [2]

(ii) Show that the lower sum L(h, Pn) of h for the equidistant partition

Pn =

�
x0 = 0, · · · , xk =

k
n

, · · · , xn = 1
�

[5]

satisfies limn→∞ L(h, Pn) =
1
2 .�

You may use the formula, ∑n
k=1 k = n(n+1)

2 , or any other correct method.
�

(iii) Compute the integral
� 1

0 h(x)dx. [3]

End of Paper.
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