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Unless otherwise stated you may assume any standard properties of the functions
sin, cos, and exp, including that they are differentiable. You should justify your
answers unless otherwise stated.

Question 1 (25 marks).
(a) State Taylor’s theorem including the Lagrange form of the remainder. [5]

For the rest of the question let f: [—1, 1] — R be an infinitely differentiable
function satisfying

e foralln >0, f™(0)=1/(n+1) and
e foralln > 0and forall v € [-1,1], | f™(x)] < 3.
(b) Write down the Taylor polynomials 75 g, T3 and 7, o. [5]

(c) Write down the Lagrange form of the remainder term R,, o and show that

Ruo)] <
forall n > 0 and for all x € [—1,1]. (7]
(d) Deduce that T, — f pointwise on [—1, 1] as n — oo. (4]
(e) Is the convergence uniform? Briefly explain your answer. (4]
Question 2 (25 marks).
(a) State the Fundamental Theorem of Calculus. [5]

For the rest of the question let f: [a,b] — R be a continuous function with
f(z) > 0 forall x € R.

(b) Prove that the function F': [a,b] — R defined by
Fla) = / Ft)dt
is continuous on [a, b]. Why do we know F' is differentiable? (7]

(c) Using the chain rule, or otherwise, show that the function G: [a,b] — R

defined by
G(z) = exp (/w f(t)dt)
is differentiable and find its derivative. ' [7]
(d) Show that G~ exists. Is G~! differentiable? Briefly justify your answer. (6]
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Question 3 (25 marks).
Let f: [a,b] — R be a bounded function and P be a partition of [a, b].

(a) Define the upper and lower sums U(f, P) and L(f, P).

(b) Let g be the function g : [0,4] — R given by the graph below, and let P be
the partition {0, 1,2,4}. Find U(g, P) and L(g, P) in this case.

(4]

(4]

Figure 1: The function g.

(c) Starting from the lower and upper sums you defined in part (a), give the
definition that f is integrable and define fab f when it exists.

(d) State the Riemann integrability condition.

(e) Suppose that f is increasing. Using the Riemann integrability condition,
prove that ff f exists in this case.

(f) Give an example of a bounded function f: [a, b] — R that is not integrable.
Briefly justify that it is not integrable.
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Question 4 (25 marks).
(a) State the definition that a function f: R — R is differentiable at a point a.

(b) Give an example of a continuous function f: R — R that is not differentiable
at zero (i.e., f’(0) does not exist) and justify your answer. (Your function
must be continuous but you do not need to justify the continuity.)

(c) Let f: R — R be a function satisfying | f(z)| < x? for all z. Prove that f is
differentiable at zero (i.e., that f'(0) exists).

(d) State the Mean Value Theorem.

(e) Let f and g be differentiable functions f, g, : [a,b] — R such that
f(a) = g(a), and f(b) = g(b). Prove that there exists ¢ € (a, b) with

f'(e) = ¢'(c).

End of Paper.
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