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You may assume any standard properties of the sine, cosine and exponential functions including the
fact that they are continuous.

Question 1. [20 marks]
Let (xn)

∞
n=1 be a sequence of real numbers.

(a) Define (using quantifier expressions) what it means for (xn)
∞
n=1 to converge to x ∈ R. [3]

(b) Define (using quantifier expressions) what it means for (xn)
∞
n=1 to tend to infinity. [3]

(c) Define (using quantifier expressions) what it means for (xn)
∞
n=1 to be a Cauchy sequence. [3]

(d) Let (xn)
∞
n=1 be the sequence defined by xn = (−1)n. Prove directly from the definition that

(xn)
∞
n=1 does not converge to any real number. [6]

(e) Give an example of a sequence of real numbers which tends to infinity. Show that your example
has the desired property. [5]

Question 2. [20 marks]

(a) Define maximum and supremum for a set of real numbers. [3]

(b) State the completeness axiom for the set of real numbers. [3]

(c) Give an example of a set of real numbers which has a supremum, but no maximum. Explain why
your example has the desired properties. [8]

(d) Suppose that a non-empty set A of real numbers is bounded below with inf(A)> 0. Let
A−1 = {x−1 : x ∈ A}. Prove that A−1 is bounded above, and show that sup(A−1) = (inf(A))−1. [6]

Question 3. [20 marks]
You may use any results from the course provided you state clearly which result you are using.

(a) Which of the following series converge? Justify your answers.

(i)
∞

∑
k=1

k3 + k+1
k3 +2k2 +3

, (ii)
∞

∑
k=1

exp(1/k)
k2 +3

, (iii)
∞

∑
k=1

1
k(k+1)(k+2)

. [12]

(b) Show that the series
∞

∑
k=1

xk given by xk =
(−1)k+1
√

k
is convergent, but not absolutely convergent. [8]
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Question 4. [20 marks]

(a) Define (using quantifier expressions) what it means to say that a function f : R→ R is
continuous at a point a ∈ R. [3]

(b) Prove directly from the definition that f : R→ R given by f (x) = 2x2 +5x
is continuous at a = 1. [7]

(c) Define (using quantifier expressions) what it means to say that a function f : R→ R is not
continuous at a point a ∈ R. [3]

(d) Give an example of a function f : R→ R which is not continuous at 0. Prove that your example
has the desired property. [7]

Question 5. [20 marks]

(a) State the Intermediate Value Theorem. [3]

Now let p(x) = x4−10x3−5x2−10x−5.

(b) Prove that p(x) = 0 has at least one solution x ∈ [−1,0]. [5]

(c) Prove that p(y) = 0 has at least one solution y > 0. [6]

(d) Let x ∈ [−1,0] and y > 0 satisfy p(x) = 0 = p(y) as in (b) and (c). Let a = y−x
2 . Prove that there

exists z ∈ [x, x+y
2 ] such that p(z) = p(z+a). [6]

End of Paper.
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