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You may assume any standard properties of the sine, cosine and exponential
functions including that they are continuous.

Question 1 (13 marks) Let f : R→ R be defined by f (x) = 2x2 +2x+2.

(a) State the definition that the function f is continuous at a point a ∈ R. [3]

(b) Using only this definition of continuity (and not any theorems proved in the
course), prove that f is continuous at all points a ∈ R. [10]

Question 2 (15 marks) Let f : R→ R be the function defined by

f (x) =

{
x if x ∈Q,
2x if x 6∈Q.

(a) Prove that f is continuous at the point a = 0. [5]

(b) Is f continuous at any other points in R? Prove your assertion. [10]

Question 3 (18 marks)

(a) Define what it means to say that (xn)∞
n=1 converges to zero, and prove that if

(xn)∞
n=1 and (yn)∞

n=1 both converge to zero, then so does (xn · yn)∞
n=1. [6]

(b) For each of the following sequences, state whether the sequence converges to
a limit in R, and, if so, find the limit. Give reasons for your answers. (You
may use any results from the course provided you state clearly which result
you are using.)

(i) xn = (−1)n
(

n−1
n+2

)
; [4]

(ii) xn = sin
(

π

2 · exp
(1

n

))
; [4]

(iii) xn = cos
(n2 +1

n3 +2

)
. [4]

Question 4 (14 marks) Let the sequence (xk)∞
k=1 be defined inductively by x1 = 14,

xn+1 = 6+
√

xn−5.

(a) Compute x2, x3 and x4. [2]

(b) Prove that 7 is a lower bound for (xk)∞
k=1. [4]

(c) Prove that (xk)∞
k=1 is strictly decreasing. [4]

(d) Deduce that (xk)∞
k=1 converges and compute the limit. [4]
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Question 5 (10 marks) Let (xk)∞
k=1 be a sequence. For each of the following state-

ments state whether it is true or false. Justification is not required.

(a) If a < xk < b for all k ∈ N, then (xk)∞
k=1 has an accumulation point in (a,b).

(b) If a 6 xk 6 b for all k ∈ N, then (xk)∞
k=1 has an accumulation point in [a,b].

(c) If (xk)∞
k=1 converges to zero, then ∑

∞
k=1 xk exists.

(d) If ∑
∞
k=1 xk exists, then (xk)∞

k=1 converges to zero.

(e) If ∑
∞
k=1 xk converges absolutely, then ∑

∞
k=1(−1)kxk exists.

(f) If ∑
∞
k=1 xk converges absolutely, then ∑

∞
k=1

xk
k exists.

[10]

Question 6 (13 marks)

(a) Given a sequence (xk)∞
k=1 and a real number S, what does it mean to say that

the sum
∞

∑
k=1

xk exists and equals S? [3]

(b) Which of the following sums exist? Briefly justify your answers.

(i)
∞

∑
k=1

1
k4 , (ii)

∞

∑
k=1

1
22k , (iii)

∞

∑
k=1

1
2k

(You may use any results from the course provided you state clearly which
result you are using.) [6]

(c) Does the sum
∞

∑
k=1

(
1
k4 +

1
22k −

1
2k

)
exist? Prove your assertion. [4]

Question 7 (17 marks)

(a) State the Intermediate Value Theorem. [3]

(b) Show that there exist at least two different real solutions to the equation
(sinx)2 = (cosx)4 in the interval [0,π]. [7]

(c) Suppose that f : [0,1]→ [0,1] is a continuous function. By considering a
suitable function g, or otherwise, prove that there must exist a point c ∈ [0,1]
with f (c) = 3

√
c. [7]

End of Paper
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