Main Examination period 2023 - May/June - Semester B
MTH5103: Complex Variables
Duration: 2 hours

The exam is intended to be completed within 2 hours. However, you will have a period of 4 hours to complete the exam and submit your solutions.

You should attempt ALL questions. Marks available are shown next to the questions.

All work should be handwritten and should include your student number. Only one attempt is allowed - once you have submitted your work, it is final.

In completing this assessment:

- You may use books and notes.
- You may use calculators and computers, but you must show your working for any calculations you do.
- You may use the Internet as a resource, but not to ask for the solution to an exam question or to copy any solution you find.
- You must not seek or obtain help from anyone else.

When you have finished:

- scan your work, convert it to a single PDF file, and submit this file using the tool below the link to the exam;
- e-mail a copy to maths@qmul.ac.uk with your student number and the module code in the subject line;

Examiners: M. Shamis, M. Farber

Main Examination period 2023 - May/June - Semester B

MTH5103: Complex Variables

Examiners: M. Shamis, M. Farber

Question 1 [20 marks].
(a) Find all the solutions of the following equation

$$
3 z+(2-i) \bar{z}=7+\mathfrak{i}
$$

in Cartesian form. Justify all of your steps.
(b) Compute the following number

$$
\left(1+\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right)^{6}
$$

Justify all of your steps.

Question 2 [20 marks].
(a) Using the Ratio Test, or otherwise, determine the radius of convergence of the power series

$$
\sum_{n=1}^{\infty} \frac{n^{n}}{(n!)^{5}}(z-2 i)^{n} .
$$

State the test that you are using and justify all of your steps.
(b) Using the Root Test, or otherwise, determine the radius of convergence of the power series

$$
\sum_{n=1}^{\infty} \frac{n^{5 n}}{\left(4 n^{4}+(1+i) n^{3}-4 i n^{5}\right)^{n}}(z-3 i)^{n}
$$

State the test that you are using and justify all of your steps.

Question 3 [20 marks].
(a) Find the coefficients a_{n} and b_{n} of the Laurent series

$$
\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}+\sum_{n=1}^{\infty} b_{n}\left(z-z_{0}\right)^{-n}
$$

of the function $f(z)=z^{15} \sin \left(\frac{1}{z^{5}}\right)$ valid on the set $\{z \in \mathbb{C}: 0<|z|<10\}$, where $z_{0}=0$. Justify all of your steps.
(b) Determine the residue of the function $f(z)$ from part (a) at the point $z=0$. Justify all of your steps

Question 4 [20 marks].
(a) Express Log $\left(\frac{3+4 i}{2+i}\right)$ in Cartesian form $(x+i y)$. Justify all of your steps.
(b) Verify that the following function is harmonic

$$
u(x, y)=-e^{y} \sin x-2 e^{-x} \sin y .
$$

Find a harmonic conjugate v of u, namely a function v such that the function $\mathfrak{u}(x, y)+\mathfrak{i v}(x, y)$ is an analytic function, such that $v(0,0)=4$. Justify all of your steps.

Question 5 [20 marks].
(a) Find all singularities of the function

$$
f(z)=\frac{\sin \frac{1}{z} \cos (z-\pi)}{\left(z-\frac{3 \pi}{2}\right)(z+4 i)^{2}},
$$

and determine the nature of each of these singularities (e.g. removable singularity, pole, essential singularity). Justify all of your steps.
(b) Using the Residue Theorem, or otherwise, compute

$$
\int_{C} \frac{z-7}{z^{2}+z-2} \mathrm{~d} z
$$

where C is the positively oriented circle of radius 4 centered at $z=0$. State all the theorems that you are using and justify all of your steps.

End of Paper.

