Main Examination period 2017
MTH5103
Complex Variables

Duration: 2 hours

Write your solutions in the space provided in this exam paper.

Apart from this page, you are not permitted to read the contents of this question paper until instructed to do so by an invigilator.

You should attempt ALL questions. Marks available are shown next to the questions.

Calculators are not permitted in this examination. The unauthorised use of a calculator constitutes an examination offence.

Complete all rough work in the answer book and cross through any work that is not to be assessed.

Possession of unauthorised material at any time when under examination conditions is an assessment offence and can lead to expulsion from QMUL. Check now to ensure you do not have any notes, mobile phones, smartwatches or unauthorised electronic devices on your person. If you do, raise your hand and give them to an invigilator immediately.

It is also an offence to have any writing of any kind on your person, including on your body. If you are found to have hidden unauthorised material elsewhere, including toilets and cloakrooms, it shall be treated as being found in your possession. Unauthorised material found on your mobile phone or other electronic device will be considered the same as being in possession of paper notes. A mobile phone that causes a disruption in the exam is also an assessment offence.

Exam papers must not be removed from the examination room.

Examiners: M. Shamis

This page is for marking purposes only: DO NOT WRITE ON IT

Question	Mark	Subpart Breakdown
1		
2		
3		
4		
5		
6		
TOTAL :		

Question 1. [15 marks]
(a) Find all solutions $z \in \mathbb{C}$ of the equation $z^{4}=1-i$.
(b) What is the image of the line $\{z=t+(1-t) i \mid t \in \mathbb{R} \cup\{\infty\}\}$ under the transformation $z \rightarrow 1 / z=w$? Provide the equation for the image and sketch the line in the z-plane and its image in the w-plane.
(c) Let the function $f(z)$ be defined on the set of non-zero complex numbers by the formula $f(z)=z / \bar{z}$. Show that f is not differentiable anywhere.

Write your solution to Question \#1(c) below

Additional space for Question 1

Question 2. [15 marks]
(a) State the Ratio Test.
(b) Using the Ratio Test, or otherwise, determine the values of z for which the power series

$$
\sum_{n=1}^{\infty}\left(\frac{z}{i n}\right)^{n}
$$

converges. What is the radius of convergence?

Write your solution to Question \#2(b) below

Question 3. [20 marks] Consider the function $f(z)=\frac{z-7}{z^{2}+z-2}$.
(a) Find the coefficients A, B, a, and b so that the function $f(z)$ has the following representation:

$$
f(z)=\frac{A}{z-a}+\frac{B}{z-b} .
$$

Write your solution to Question \#3(a) below
(b) Using part (a), find the coefficients a_{n} and b_{n} of the Laurent series

$$
\sum_{n=0}^{\infty} a_{n} z^{n}+\sum_{n=1}^{\infty} b_{n} z^{-n}
$$

of $f(z)$ on the annulus $1<|z|<2$.
(c) Determine the residue of $f(z)$ at the point $z=1$.

Write your solution to Question \#3(c) below

Additional space for Question 3
© Queen Mary University of London (2017)

Question 4. [15 marks]
(a) Suppose f is a complex function. Define what is meant by an isolated singularity of f. Define what is meant by an essential singularity of f.
(b) Find all singularities of the function

$$
f(z)=\frac{\sin (z-1)}{z^{2}+2 z-3}
$$

and determine the nature of each of these singularities.

Additional space for Question 4

Question 5. [15 marks]
(a) State Rouché's Theorem.
[5]

Write your solution to Question \#5(a) below
(b) How many zeros (counted with multiplicity) does the polynomial

$$
f(z)=4 z^{4}-29 z^{2}+5
$$

have in the annulus $2<|z|<4$? Justify your answer.

Additional space for Question 5

Question 6. [20 marks]
(a) State the Residue Theorem.
(b) Using the Residue Theorem, or otherwise, compute

$$
\int_{C} \frac{z+1}{(z-1)(z+2)^{2}} d z
$$

where C is the positively oriented circle of radius 5 centred at the origin.

Additional space for Question 6

This page is for additional work and will NOT be marked.

End of Paper.

