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Question 1.

(a) Describe graphically the set of points z in the complex plane satisfying
=

(
z3

)
≥ 0. Justify your answer.

[4]

Write your solution to Question #1(a) below
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(b) Define what is meant by a Möbius transformation. Determine the unique
Möbius transformation which sends z = −1 to w = i, z = ∞ to w = 1, and
z = i to w = 1 + i. Verify that, for this Möbius transformation, the real axis in
the z-plane is mapped onto the circle of radius 1 centred at the origin in the
w-plane.

[6]

Write your solution to Question #1(b) below
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(c) Write down the Cauchy–Riemann equations satisfied by the real and
imaginary parts u and v of a complex function f (z) and state the conditions
under which this f is guaranteed to be complex differentiable at z0.

[3]

(d) Let f (z) = e−iz be a function of a complex variable z = x + iy. Use part (c) to
show that f ′(z) exists for all z.

[3]

Write your solution to Question #1(c) and #1(d) below
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Additional space for Question 1
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Question 2.

(a) Find the Taylor series expansion of the function f (z) =
z3

z + 4
about z0 = 0

and determine the radius of convergence of the series. [6]

Write your solution to Question #2(a) below
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(b) Suppose the power series
∞∑

n=0

an(z − 2)n is known to have radius of

convergence R = 1. What can be said about the convergence/divergence of
∞∑

n=0

an

2n ? Justify your answer. [6]

Write your solution to Question #2(b) below

c© Queen Mary, University of London (2016)



MTH5103 (2016) Page 9

(c) Give an example, if possible, of a power series centred at z0 = 0 which
converges for all z with =(z) = 1 but diverges for all other z ∈ C. If there is
no possible example, explain why not. [4]

Write your solution to Question #2(c) below
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Additional space for Question 2
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Question 3. Consider the function f (z) =
12

z(z + 4)
.

(a) Find the coefficients an and bn of the Laurent series

∞∑
n=0

an(z + 4)n +

∞∑
n=1

bn(z + 4)−n

of f (z) on a punctured disc centred at z0 = −4 and specify the region on
which the series is valid. You should also indicate what is meant by a
punctured disc. [6]

Write your solution to Question #3(a) below
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(b) Using part (a), what type of singularity does f (z) have at the point z0 = −4? [6]

Write your solution to Question #3(b) below
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(c) Determine the residue of f (z) at the point z0 = −4. [6]

Write your solution to Question #3(c) below
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Additional space for Question 3
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Question 4.

(a) Explain what is meant by an isolated singularity of a complex function f .
Locate the singularities of f (z) = z5 sin

(
1
z

)
and determine the nature of these

singularities (e.g., pole of order m, removable singularity or essential
singularity).

[6]

Write your solution to Question #4(a) below
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(b) Prove the following: If f (z) has a zero of order m at z0 = 0, then g(z) = 1
f (z2)

has a pole of order 2m at z0 = 0.

[6]

Write your solution to Question #4(b) below
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(c) Determine the singularities of f (z) =
e−iπz

z2 − 9
and compute the residue of f at

each such singularity. [6]

Write your solution to Question #4(c) below
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Additional space for Question 4
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Question 5.

(a) Let C describe the unit circle traversed once, anti-clockwise. Using the
Estimation Theorem (also called the M-L Inequality), show that∣∣∣∣∣∣

∫
C

ez

4z4 dz

∣∣∣∣∣∣ ≤ πe
2
.

[7]

Write your solution to Question #5(a) below
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(b) State Cauchy’s Theorem. [5]

Write your solution to Question #5(b) below
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(c) Consider the closed, anticlockwise-oriented triangle C, comprised of the
union of the three line segments joining the points eiπ/4, −2, and 1

2 − i in the
complex plane. Draw the path given and use Cauchy’s Theorem to evaluate∫

C

5z2

81 − z4 dz.

[6]

Write your solution to Questions #5(c) below
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Additional space for Question 5
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Question 6.

(a) State the Residue Theorem. [5]

Write your solution to Question #6(a) below
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(b) Using the Residue Theorem, or otherwise, evaluate∫
C

cos iπz
2

(z + i)(z − 3)2 dz,

where C is the positively oriented circle of radius 2 centred at the origin. [9]

Write your solution to Question #6(b) below
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Additional space for Question 6
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This page is for additional work and will NOT be marked.

End of Paper.
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