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Question 1 (a) Find all solutions z ∈ C of the equation z3 = 8. [5]

(b) Find all solutions z ∈ C of the equation e3z = 1. [5]

(c) Suppose w = f(z) = z−1
z−3 . Show that the image under f of the line Re(z) = 2

is the unit circle {w ∈ C : |w| = 1}. [5]

Question 2 (a) Write down the definition of the radius of convergence of a power
series

∑∞
n=0 an(z − z0)n. [3]

(b) Find the Taylor series expansion
∑∞

n=0 an(z − 3)n of f(z) = 1/(1 + 4z) about
the point z0 = 3. [5]

(c) Determine the radius of convergence of the Taylor series in (b) above. [2]

(d) If g(z) = 1
(z−1)(3−z) , find the Laurent series

∑∞
n=0 an(z−1)n+

∑∞
n=1 bn(z−1)−n

for g about the point z = 1. [5]

Question 3 (a) Write down the Cauchy-Riemann equations satisfied by the real
and imaginary parts u and v of a complex function f = u+ iv at any point z0
where f is complex differentiable. [3]

(b) If u and v satisfy the Cauchy-Riemann equations at z0, what extra condition
on u and v will ensure that f is complex differentiable at z0 ? [2]

(c) Let f(z) = y(3x2 − y2) + ix(x2 − 3y2). Show that f is complex differentiable
at just one point, and compute its derivative at this point. [5]

(d) If f : C → C is entire, and Re(f(z)) = Im(f(z)) for all z ∈ C, use the
Cauchy-Riemann equations to prove that f is a constant function. [5]
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Question 4 (a) What is meant by an isolated singularity of a complex function
f ? What does it mean to say that such a singularity is a pole of order m ?
What is meant by the residue of f at an isolated singularity ? [6]

(b) Locate the poles of the function

f(z) =
z

(z2 + 9)2
.

Determine the order of each pole, and its residue. [6]

(c) State Rouché’s Theorem (without proof). How many zeros (counted with
multiplicity) does the polynomial p(z) = z6 − 5z5 + 10z4 − 2z2 + 1 have in the
annulus {z ∈ C : |z| ≥ 1} ? Justify your answer. [8]

Question 5 (a) Let C be a contour parametrised by a piecewise smooth function
γ : [a, b] → C. Define what is meant by the contour integral

∫
C f(z) dz of the

complex function f along the contour C. [4]

(b) Evaluate the integral
∫
C f(z) dz when f(z) = z̄ (the complex conjugate of z)

and

(i) C is the straight line segment from +2 to −2. [4]

(ii) C is the curve from +2 to −2 along the upper half of the radius-2 circle
centred at 0. [4]

(c) Is it possible that the function f(z) = z̄ has an antiderivative on C? Find one
or else give a reason why such an antiderivative cannot exist. [3]

c© Queen Mary, University of London (2014) TURN OVER



Page 4 MTH5103 (2014)

Question 6 (a) State Cauchy’s Theorem and use this to calculate∫
C

sin(z)

z2 + 2z + 2
dz

where C is the positively oriented circle centred at the origin with radius 1,
being careful to justify your answer. [8]

(b) State the Residue Theorem. [2]

(c) Using the Residue Theorem, or otherwise, evaluate∫
C

(
e1/z +

1

z − 1

)
dz

where C is the positively oriented circle having centre z = 1 and radius 2. [10]

End of Paper
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