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Section A - multiple choice & short questions
This section is a multiple choice test. Please enter answers by ticking the
appropriate box. Use the back of the answer book for rough work. Both questions
left unanswered and incorrect answers get zero marks.

Question 1. Consider a sphere of unit radius described implicitly as
f(x, y, z) = 1, where f(x, y, z) = x2 + y2 + z2. A parametric equation of the
straight line that is normal to the sphere at the point of coordinates (1, 0, 0) is [4]

r(t) = (2t, 0, 0)
r(t) = (0, 0, 0) + t(2, 2, 2)
r(t) = (t, t− 1, 0)
None of the above

Question 2. x2 + y2 + 8x− 2y = −16 is the implicit equation of: [4]
a circle centered at (3, 0)
an ellipse
a circle of radius 1
None of the above

Question 3. Consider the vector field F = yi. In spherical coordinates, what is the
correct expression for F? [4]

r sin θ sinφ(sin θ cosφer + cos θ cosφeθ − sinφeφ)
r sin θ sinφ(sin θ cosφer + sinφeθ − cos θ cosφeφ)
r sin θ sinφ(cos θ cosφer + sin θ cosφeθ − sinφeφ)
r sin θ sinφ(sin θ cosφer + cosφeθ + sinφeφ)

Question 4. Consider the vector field F = (x2, xy, xz). Compute the divergence
and curl of F and give the solution in the box: [4]

Question 5. Let F and U be a vector field and a scalar field respectively. For each
of the following expressions, state whether it is a scalar field (scalar), a vector field
(vector) or an invalid expression (invalid): [4]

• U2(∇× F) · (∇ · F) :

• U(∇ · F)∇(∇ · F) :

• ∇ × (∇U) :

• ∇ ×∇(∇ · F) :
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Section B
Respond to the following questions only using the space left for that purpose.

Question 6 (15 marks). Let C be the curve in R3 whose parametric equation reads
r(t) = (cos t, sin t, 3t). Consider the points A = (0, 0, 0), B = (1, 0, 0) and
C = (−1, 0,−3π).

(a) Make a sketch of this curve, for 0 ≤ t ≤ 4π. [2]

(b) Only two out of these three points belong to the curve. Determine which are
these points and compute the arc length of C between these two points. [6]

(c) Consider the vector field F = xi + 4yj + 6k. Calculate the line integral of F
along C between the two points found in part (b) (the direction should be
taken from the point with smaller value of the parameter to the one with
larger value). [7]

Write your solution to Question #6 below
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Additional space for Question 6
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Additional space for Question 6
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Question 7 (25 marks). Let F be a suitably differentiable vector field.

(a) Define what a solenoidal and a conservative vector field are, and then prove
the following statement: if F is both solenoidal and conservative then its
scalar potential φ fulfils Laplace’s equation. [6]

(b) Prove that if F is conservative then the circulation of F is always null. [6]

(c) Prove that if r(t) describes a closed curve that is bounding a closed surface,
then the line integral of F along the whole curve is always null even if F is
not conservative. [6]

(d) Prove that F = (2y, 2x− 2y, 6) is conservative and compute a scalar
potential φ for F. [7]

Write your solution to Question #7 below
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Additional space for Question 7
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Additional space for Question 7
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Additional space for Question 7
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Question 8 (10 marks). (a) State (without proof) the divergence theorem.
Define precisely all the terms used and any required conditions for the
theorem to hold. [3]

(b) Apply this theorem to calculate the surface integral of the vector field
F = zy2i+2yj− 3x3k over the cylinder defined by x2 + y2 ≤ a2, 0 ≤ z ≤ b,
where a, b are positive constants. Explain in detail why the theorem is
applicable in this case. [7]

Write your solution to Question #8 below
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Additional space for Question 8
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Question 9 (15 marks). State the definition of the Fourier series S(x) of a
periodic function f(x) of period 2π. [2]
Let f(x) be a periodic function of period 2π defined in (−π, π] by

f(x) =

{
−2 if − π < x < 0

2 if 0 ≤ x ≤ π.

(a) How can you tell easily that S(x) does not have any cosine terms? [2]

(b) Calculate the Fourier series S(x) of f(x). [11]

Write your solution to Question #9 below
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Additional space for Question 9
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Additional space for Question 9
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Question 10 (15 marks). Let V (x, y) be a scalar field that satisfies Laplace’s
equation inside the square 0 ≤ x ≤ 2, 0 ≤ y ≤ 2. The boundary conditions are:
V (x, 2) = sin 4πx on the side where y = 2, and V = 0 on the other three sides.

(a) Make a sketch of the region where V (x, y) is defined, along with the value of
the boundary condition on each side. [3]

(b) According to the boundary conditions, what type of harmonic function
should we use to find the solution to the Dirichlet problem? Justify your
answer in detail. [3]

(c) Find V (x, y). [9]

Write your solution to Question #10 below
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Additional space for Question 10
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Additional space for Question 10
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Additional space for Question 10
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This page is for additional work and will NOT be marked.
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This page is for additional work and will NOT be marked.
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This page is for additional work and will NOT be marked.
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This page is for additional work and will NOT be marked.

End of Paper.
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