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Question 1. [17 marks]

(a) In a ring R, explain why 0 + 0 = 0 and hence, or otherwise, show that a0 = 0 for
all a ∈ R. You may refer to any relevant ring axioms from lectures. [5]

(b) State without proof the general form of a subring of Z. [4]

(c) Define what is meant by a coset of a subring S of a ring R. [4]

(d) Give an example of a subring S of a ring R where both S,R are infinite but the
number of cosets of S in R is finite and greater than 1. Justify your answer. [4]

Question 2. [15 marks]

(a) Define what is meant by an ideal I of a ring R. [3]

(b) Let θ : R→ S be a ring homomorphism between rings R, S. Define ker(θ) and
im(θ). [4]

(c) Let θ : M2(Z)→M2(Z2) be given by taking matrix entries mod 2. Explain why θ
is a ring homomorphism and show that im(θ) = M2(Z2) and that
ker(θ) = M2(2Z). [8]

Question 3. [17 marks]

(a) Let I be an ideal of a ring R. What is the zero element of the factor ring R/I?
Justify your answer. You are not asked to prove the rest of the ring axioms for
R/I. [4]

(b) Let R = M2(Z) and I = M2(2Z).

(i) Explain why I is an ideal of R and show that R/I ∼= M2(Z2). (Hint: use your
answer to part (c) of Question 2 and a theorem from lectures.) [5]

(ii) Let T = {I + A | A ∈ R, a12 ∈ 2Z}, where a12 is the top right entry of A. Which
subring of M2(Z2) does T map to under the isomorphism in part (i)? Justify your
answer. [8]
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Question 4. [26 marks]

(a) Let i =
√
−1. Assuming that the Gaussian integers Z[i] = {a+ b i | a, b ∈ Z}

form a unique factorisation domain, factorise 4 ∈ Z[i] into irreducibles and outline
the sense in which your factorisation is unique. You may assume that the units of
the ring are ±1,±i. [8]

(b) For a commutative ring, define what it means for one element to divide another
and what is meant by a gcd of two elements. [6]

(c) For a commutative ring R with identity, define what is meant by the ideals 〈a〉,
〈a, b〉 for any fixed elements a, b ∈ R. [5]

(d) Let R be a principal ideal domain and let a, b ∈ R. Show that 〈a, b〉 = 〈d〉
where d is a gcd of a and b. [7]

Question 5. [11 marks]

(a) State precisely what it means for a ring R to be a Euclidean domain. [5]

(b) Let Z[x] be the ring of polynomials with integer coefficients and d the function
that assigns to a non-zero polynomial its degree. By showing that 1 = 2q + r has
no solution for q, r ∈ Z[x] with r = 0 or d(r) < d(2), or otherwise, show that d
does not make Z[x] into a Euclidean domain. [6]

Question 6. [14 marks]

(a) Define what it means for an ideal I of a ring R to be maximal. State what this
implies for the factor ring R/I in the case where R is commutative and has an
identity. [5]

(b) Let F2 = {0, 1} be the field of 2 elements and F2[x] the ring of polynomials with
coefficients in F2. Show that f(x) = 1 + x2 is not irreducible as an element of
F2[x]. [5]

(c) For f in part (b), is F2[x]/〈f〉 a field? Justify your answer. [4]

End of Paper.

c© Queen Mary University of London (2018)


