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Question 1. [18 marks]

(a) Define what it means for a ring R to be commutative. [2]

(b) Show that the ring M2(F2) of 2× 2 matrices with entries from F2 is
non-commutative. Here F2 is the field of 2 elements. [4]

(c) Define what it means for a subset S ⊆ R of a ring R to be a subring. [3]

(d) Define what it means for a subring I ⊆ R of a ring R to be an ideal. [3]

(e) Give an example of a subring of M2(F2) which is not an ideal. Justify
your answer. You may use one of the subring tests from lectures. [6]

Question 2. [15 marks]

(a) Define what it means for a ring R to have an identity. [2]

(b) Give an example of a subring S ⊆ R of a ring R where S has an
identity which is not an identity for R. Justify your answer regarding
the identity. [6]

(c) Let I ⊆ R be an ideal of a ring R. Suppose that R has identity 1 and
that 1 ∈ I. Prove that I = R. [3]

(d) Let I ⊆ R be an ideal of a field R. Prove that I = {0} or I = R. Hint:
show that if I has a nonzero element i then ii−1 ∈ I. [4]

Question 3. [14 marks]

(a) Let θ : Z8 → Z4 be defined by θ([i]8) = [i]4 for all i ∈ Z. You may
assume that this is a well-defined ring homomorphism. Find Ker(θ) and
exhibit the partition of Z8 into cosets of Ker(θ). [6]

(b) Let I ⊆ R be an ideal of a ring R. What are the elements of the factor
ring R/I and how do you add and multiply them to form a ring? You
are not asked to prove anything. [3]

(c) For θ in part (a), find a nonzero element of Z8/Ker(θ) which squares to
zero. Show that the factor ring here is isomorphic to Z4. You may use
any results from lectures. [5]
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Question 4. [26 marks]

(a) Give an example in Z8 of a zero divisor and of a unit other than the
identity. [4]

(b) In a commutative ring with identity, state what it means for two
elements to be associates and for an element to be irreducible. [4]

(c) State what is meant by each of the terms:

(i) Integral domain; [4]

(ii) Unique factorisation domain; [4]

(iii) Principal ideal domain; [4]

(iv) Euclidean domain. [4]

(d) State an example of a unique factorisation domain which is not a
principal ideal domain. You are not asked to prove anything. [2]

Question 5. [13 marks]

(a) Factorise 4 ∈ Z[
√
−3] = {a+ b

√
−3 | a, b ∈ Z} in two different ways to

show that Z[
√
−3] is not a unique factorisation domain. You may

assume that its only units are ±1 and that 2, 1±
√
−3 are irreducible. [4]

(b) State a Euclidean function d that makes the Gaussian integers
Z[
√
−1] = {a+ b

√
−1 | a, b ∈ Z} into a Euclidean domain. [2]

(c) Show that every Euclidean domain is a principal ideal domain. [5]

(d) Is every principal ideal domain a unique factorisation domain? You are
not asked to justify your answer. [2]

Question 6. [14 marks]

(a) State what it means for an ideal I ⊆ R of a ring R to be maximal. [3]

(b) Show that f = 1 + x+ x2 ∈ F2[x] is irreducible and outline why 〈f〉 is a
maximal ideal of F2[x] given that the latter is a principal ideal domain. [6]

(c) For f in part (b), prove that F2[x]/〈f〉 is a finite field of 4 elements.
You may use any general results from lectures. [5]

End of Paper.
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