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Question 1. [12 marks]

(a) Explain what is meant by a prime number. [4]

(b) Prove that there are infinitely many prime numbers. [8]

Question 2. [12 marks] Let A, B and C be sets.

(a) Define the following sets:

(i) A∪B, (ii) A\B, (iii) A4B. [4]

(b) Consider the following equalities.

(i) A\ (B∪C) = (A\B)∩ (A\C).

(ii) (A∪B)\C = (A\C)∩ (B\C).

For each of them decide whether it is true or false. If it is true prove it
without appealing to Venn diagrams; if it is false give a counterexample. [8]

Question 3. [16 marks]

(a) Let R be a relation on a set A. Explain what is meant by saying that R is

(i) reflexive, (ii) symmetric, (iii) transitive. [6]

(b) Give an example of a relation on Z which is transitive, but neither reflexive
nor symmetric. [2]

(c) Let a relation R be defined on C by a R b if and only if |a|= |b|. Show that R
is an equivalence relation and describe the corresponding equivalence
classes. [8]

Question 4. [12 marks] Let f : N→ N be a function. Suppose that
f (k + l) = f (k) · f (l) for all natural numbers k and l. Prove, using induction, that
f (n) = f (1)n for all n ∈ N. [12]

Question 5. [12 marks] Let a and b be integers.

(a) Explain what is meant by the greatest common divisor of a and b. [4]

(b) Suppose that a = bq+ r for some integers q and r. Show that
gcd(a,b) = gcd(b,r). [4]

(c) Calculate gcd(84,60) using Euclid’s algorithm. [4]
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Question 6. [16 marks]

(a) Let

z =
1√
2
(1− i).

Determine the modulus and argument of z. Hence, or otherwise, find the real
and imaginary parts of z2017. [6]

(b) State the Fundamental Theorem of Algebra. [4]

(c) (i) Is every non-constant polynomial function p : R→ R surjective?

(ii) Is every non-constant polynomial function p : C→ C surjective?

In each case, give reasons for your answers. [6]

Question 7. [12 marks] Let x and y be real numbers. Consider the following
statement.

If xy is irrational, then x or y is irrational.

(a) Write down the contrapositive. [3]

(b) Write down the converse. [3]

(c) Is the statement true? Is the contrapositive true? Is the converse true? Give
reasons for your answers. [6]

Question 8. [8 marks]

(a) Find the flaw in the following proof: [4]
Theorem. Let a, b, c and d be positive real numbers, with a/b < c/d.
Then

a
b

<
a+ c
b+d

.

Proof.
If

a
b

<
a+ c
b+d

,

then a(b+d) < (a+ c)b ,

so ab+ad < ab+ cb ,

hence
a
b

<
c
d

,

and the assertion follows. �

(b) How can it be fixed? [4]

End of Paper.
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