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In this paper we employ the following standard notation: Ω is the sample space, ω
is an outcome, A, B, C are events, Ac is the complement of A, |A| is the cardinality
of A, P is a probability.

Question 1. (BASICS)

(a) The following expressions are meaningless: explain what is the fault [as
opposed to writing a corrected expression]. [4]

(i) P(∅c) ∩ A

(ii) P(A ⊂ Ω).

(b) Write down in symbols events such that, of the events A, B and C, [4]

(i) only A occurs;

(ii) exactly two of them occur.

No justification is necessary.

(c) Prove the following statements, quoting any result you use. [4+5]

(i) For all A, we have P(A ∩ Ac) = 0.

(ii) The probability that exactly one of the events A or B occurs is equal to
P(A) + P(B)− 2P(A ∩B).

Question 2. (SAMPLING)

(a) A fair coin is tossed repeatedly. Let n > 2. What is the probability that a
head will occur for the second time on the nth toss? [6]

(b) At a round table with eight chairs, four men and four women sit at random.
What is the probability that every woman will sit between two men? [6]

(c) Four people choose at random one holiday destination among ten
destinations. Show that the probability that at least two people will make the
same choice is less than 1/2. [6]

Justify your calculations.
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Question 3. (CONDITIONAL PROBABILITY)

(a) Let Ω be the interval [0, 1], and let the probability of an interval A ⊂ Ω be
equal to the length of A. Give an example —with justification— of [9]

(i) two intervals A and B such that A and B partition Ω;

(ii) two intervals A and B such that A and B are independent;

(iii) two intervals A and B such that P(A|B) = 1.

(b) In a batch of manufactured items, 5% of the items have a fault. A diagnostic
test has 90% chance of detecting an item that is faulty, but also 1% chance of
giving a false positive when an item really has no fault. Compute the
probability that an item which has been diagnosed as being faulty, is, in fact,
faulty. Justify your calculations. [6]

(c) Prove that if P(A) = P(B) = 2
3
, then P(A|B) > 1

2
. [6]

Question 4. (RANDOM VARIABLES)

(a) Let the sample space Ω be a set of polygons1. Give examples of [4]

(i) a discrete random variable on Ω;

(ii) a continuous random variable on Ω.

(b) Let X be a discrete random variable. Consider the expression [4]

P(X = k).

Explain what the short-hand expression ‘X = k’ stands for.

(c) A hundred tickets are sold in a lottery in which there is a top prize of £50 and
four prizes of £10 each. Each ticket costs £1. Let X be your net gain when
you buy one ticket. [4+6+3]

(i) Compute the probability mass function of X .

(ii) Define, compute, and draw the cumulative distribution function of X .

(iii) Compute the expectation of X .

Explain what you do.

1A polygon is a plane figure bounded by a finite chain of line segments, closing in a loop.
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Question 5. (DISTRIBUTIONS)
In every part of this question, a precise and concise exposition is essential for good
marks.

(a) Introduce briefly the Poisson distribution. Verify that it is indeed a
distribution, and explain —without proof— its connection with the binomial
distribution. [7]

(b) Assume that, on average, a typographical error is found every 1000 typeset
characters. Compute the probability that a 600-character page contains fewer
than two errors. [4]

(c) Introduce briefly the exponential distribution, explaining its connection with,
and deriving it from, the Poisson distribution. [7]

(d) Derive expressions for the median and the expectation of the exponential
distribution. [5]

End of Paper.
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