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In this paper we employ the following standard notation: Ω is the sample
space, ω is an outcome, A,B,C are events, Ac is the complement of A, P
is a probability.

Question 1. [6 marks]

The following expressions are meaningless. Explain what is the fault, as
precisely as you can.

i) The product of two events

ii) A|B

iii) P(A|Bc)c

iv) Ω \ P(A \ {ω}).

Question 2. [6+5+5+7 marks]

(a) Assuming that the probability of any child being male is 1/2, find the
probability that in a family of five children

i) all children are of the same sex;
ii) the three oldest are boys and the two youngest are girls;
iii) three of them are boys and two of them are girls.

(b) I forgot the last digit of my cash card’s pin number. I am allowed
three attempts, after which the card will be withdrawn. What is the
probability that I’ll be able to use the card?

(c) Five books, three of which have a yellow cover, are placed at random
on a bookshelf. What is the probability that the yellow books will end
up side-by-side?

(d) A box contains two fair coins and one unfair coin with two heads. A
coin is selected at random from the box, and tossed twice.

(i) What is the probability that both tosses show heads?
(ii) If both tosses show heads, what is the probability that it is the

unfair coin?
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Question 3. [5+5+5 marks]

(a) Prove that P(Ω \A) = 1−P(A), for any Ω, P and A, indicating where
Kolmogorov’s axioms are needed.

(b) Suppose that A1, A2, A3 are events. Show that if P(A1∩A2) > 0, then
P(A1 ∩A2 ∩A3) = P(A1)P(A2|A1)P(A3|A1 ∩A2).

(c) Let Ω = {1, 2, . . . , n} and for any subset A ⊂ Ω let

P(A) =

{
1 if 1 ∈ A
0 if 1 6∈ A.

Show that P is a probability, namely that P satisfies Kolmogorov’s
axioms.

Question 4. [4+4 marks]

(a) Let Ω = {1, 2, . . . , 20} and let A be the set of even integers in Ω.
Assuming that all elements of Ω are equally likely, give an example
—with justification— of events B and C such that

(i) A and B are independent;
(ii) A and C are not independent.

(b) Let Ω = {1, 2, 3}. Give an example —with justification— of a proba-
bility P for which the events {1, 2} and {2, 3} are independent.

Question 5. [6+8+6 marks]

(a) Explain what is a random variable, and what it means for a random
variable to be discrete. Let Ω be a set of books; give an example of a
discrete random variable on Ω.

(b) A fair die is rolled twice. Let the random variable X be the larger of
the two scores.

(i) Compute the probability mass function of X.
(ii) Compute and plot the cumulative distribution function of X.

(c) Let the sample space and random variable X be as in part (b), and
let the random variable Y be equal to 1 if the two scores are the same,
and equal to 0 otherwise. Compute the joint probability mass function
of X and Y .
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Question 6. [6+8 marks]

(a) Explain what it means for a random variable to have the binomial
distribution. Hence state and prove a formula for the expectation of
such a random variable.

(b) Two players, Ann and Bob, in turn roll a fair die. Ann rolls first, and
the first one to roll a six wins.

i) What are their respective chances of winning?
ii) Let the random variable X be the number of times Bob rolls the

die. Compute P(X = k) for k 6 3.

Question 7. [7+7 marks]

(a) Introduce the notion of variance of a continuous random variable in
approximately half a page. All the concepts that are needed to define
the variance (density and cumulative distribution functions, expecta-
tion, etc) must also be introduced, in a coherent manner.

(b) Consider the function δ : R→ R, given by:

δ(x) =

{
cxα 0 6 x 6 1
0 otherwise

where c and α are real numbers, and α > −1.

(i) For given α, determine the value of c such that δ = δX is the
probability density function of some random variable X.

(ii) Compute the expectation and the median of X.

End of Paper
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