MTH4104-INTRODUCTION TO ALGEBRA - 2021/22

$\boldsymbol{\pi} \boldsymbol{>}$ MTH4104-Introduction to Algebra-2021/22 > Exam > Semester B final assessment > Preview

YOU CAN PREVIEW THIS QUIZ, BUT IF THIS WERE A REAL ATTEMPT, YOU WOULD BE BLOCKED BECAUSE:

This quiz is not currently available

QUESTION 1

Not yet answered Marked out of 10.00

Let m be a positive integer. Define the set $R=\{0,1,2, \ldots, m-1\}$. Define new operations \oplus and \odot on R as follows: for elements $a, b \in R$,

$$
\begin{aligned}
& a \oplus b:=(a+b) \bmod m \\
& a \odot b:=(a b) \bmod m
\end{aligned}
$$

where mod is the binary remainder operation (notes section 2.1). You may assume that R with the operations \oplus and \odot is a ring.
i. What is the difference between the rings R and \mathbb{Z}_{m} ? [5 marks]
ii. Explain how the rings R and \mathbb{Z}_{m} are similar. [5 marks]

Maximum file size: Unlimited, maximum number of files: 1

Files

Drag and drop files here or click to upload

Accepted file types
Image (JPEG) .jpeg
PDF document .pdf

QUESTION 2

Not yet answered Marked out of 10.00

Solve the equation $[8]_{14} X+[1]_{14}=[3]_{14} X+[12]_{14}$ for $X \in \mathbb{Z}_{14}$. Write your answer as $X=[x]_{14}$ where $0 \leq x<14$. What is x ?

Answer: \square

Let X be a set. Let P be a set of subsets of X such that:

- if A and B are distinct elements of P, then $A \cap B=\varnothing$;
- the union of all sets $A \in P$ is X.

Note that these are clauses (b) and (c) of the definition of a partition (Definition 1.5).
Now define a relation R on the set X by $R=\{(x, y): x \in A$ and $y \in A$ for some $A \in P\}$, as in Theorem 1.7(b). Which of the following is true?

Select one:

a. R must be an equivalence relation, and $\left\{[x]_{R}: x \in X\right\}$ must equal P.b. $\quad R$ must be reflexive and transitive but might not be symmetric.c. R must be symmetric and transitive but might not be reflexive.d. R must be an equivalence relation, but $\left\{[x]_{R}: x \in X\right\}$ might not be equal to P.e. R must be reflexive and symmetric but might not be transitive.
QUESTION 4

Not yet answered Marked out of 4.00

Let R be a ring. Let p and q be elements of $R[x]$ such that $\operatorname{deg}(p)=1$ and $\operatorname{deg}(q)=2$. True or false: p and q may be equal as elements of $R[x]$.

Select one:TrueFalse

QUESTION 5

Not yet answered Marked out of 10.00

Below are two sets of real numbers. Exactly one of these sets is a ring, with the usual addition and multiplication operations for real numbers. Select the one which is a ring. [4 marks]
$\left\{a / 2^{n}: a \in \mathbb{Z}, n \in \mathbb{N}\right\}$
$\{a / 2: a \in \mathbb{Z}\}$
Let R be the ring above. True or false: [2 marks each]
R is a ring with identity.
True
False
R is a skewfield.
True
False
R is a commutative ring.
True
False

Let G be the interval $(1 / 3, \infty)$. Let \propto be the operation on G such that, for all $x, y \in G$, $x \propto y=6 x y-2(x+y)+1$.
i. Write down the identity element e for (G, c). You need not write a proof of the identity law. [4 marks]
ii. Prove the inverse law for (G, a). [8 marks]

Maximum file size: Unlimited, maximum number of files: 1

Files

Drag and drop files here or click to upload

Accepted file types
Image (JPEG) .jpeg
PDF document .pdf

QUESTION 7

Not yet answered Marked out of 10.00
Let $f=\left(\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 5 & 6 & 3 & 4\end{array}\right)$ and $g=\left(\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 3 & 6 & 1 & 2 & 4\end{array}\right)$ be permutations in S_{6}, written in two-line notation.

What is f in cycle notation? Enter single spaces between the numbers in each cycle. Do not type spaces anywhere else in your answer. [4 marks]

Let $h=f^{-1} . g$. What is the second line of h in two-line notation? Enter it as a list of numbers separated by single spaces. [6 marks]

QUESTION 8

Not yet answered Marked out of 10.00

Let (G, \diamond) be a group and $x \in G$. Suppose H is a subgroup of G that contains x. Which of the following must H also contain? [5 marks]
\square All elements $x \diamond$ y for $y \in G$
x^{*}, the inverse of x
\square The identity element e of G
\square All "powers" $x \diamond x, x \diamond x \diamond x, \ldots$
Enter the smallest subgroup of $\mathbb{Z}_{13}{ }^{\times}$containing the element $[9]_{13}$, as a set. Write each congruence class in the form $[b]_{13}$ where $0 \leq b<13$. You don't have to type out the brackets and subscript " ${ }_{13}$ ". [5 marks]

Let R be a ring. True or false: the product of two nonzero elements of R must be nonzero. [3 marks]

True
False
Let $p=a x^{2}+b x+c$ and $q=d x^{2}+e x+f$ be two elements of $R[x]$. What is the coefficient of x^{4} in the product pq? [3 marks]

Assume a and d are nonzero. If you are given no further information, what can you conclude about the degree of $p q$? [4 marks]

The degree of pq can be any integer from 0 to 4 , or undefined.
The degree of pq can be any integer at all, or undefined.
The degree of pq can be any integer greater than or equal to 4 .
The degree of pq is 4 .
The degree of pq is either 3 or 4 .

QUESTION 10

Let S be the following relation on $\mathbb{C} \backslash\{0\}$:

$$
S=\left\{(x, y) \in(\mathbb{C} \backslash\{0\})^{2}:|y / x|=1\right\} .
$$

Prove that S is an equivalence relation.
Recall that the modulus of a complex number $z=a+b i$ is defined as $|z|=\sqrt{a^{2}+b^{2}}$. In your answer you may use properties of the modulus function without proving them.

Accepted file types
Image (JPEG).jpeg
PDF document .pdf

Let $X=\{1,2,3,4,5,6\}$. Which of the following is a partition of X ?$\{1,3,5\}$(1 2)(3 4)(56)$\{(1,2),(3,4),(5,6)\}$$\{\{1,2\},\{3,4\},\{5,6\}\}$

4 How to input things

 on the exam (hidden)Jump to...

Late-summer reassessment 2020/21

Help \&	QMplus	QMplus	QMplus
Support	Media	Hub	Archive

