MTH4104 - INTRODUCTION TO ALGEBRA - 2019/20

```
R > Courses > Science and Engineering > MTH4104-Introduction to Algebra-2019/20 > Exam > Alternative assessment (May)2020
> Preview
```

YOU CAN PREVIEW THIS QUIZ, BUT IF THIS WERE A REAL ATTEMPT, YOU WOULD BE BLOCKED BECAUSE:

This quiz is not currently available

QUESTION 1 Not yet answered Marked out of 10.00

Let R be the relation $\left\{(x, y) \in \mathbb{R}^{2}: y>x+2\right\}$ on the set \mathbb{R} of real numbers. True or false:
R is reflexive.
R is symmetric.
R is transitive.

QUESTION 2

Not yet answered Marked out of 10.00

Let R be a ring with identity, and let $x \in R$. Then the equation $(-1) x=-x$ is true in R.
Fill in the white boxes to make a proof of this fact. For each step in the proof, fill in the grey box to indicate which ring axiom or other fact is used to derive that step.

Proof:

(You should fill all the boxes, so if you came up with a proof that doesn't fill them all, try including more intermediate steps. Please feel free to look up in the lecture notes what "Proposition 5.11" is.)

the additive identity law the additive inverse law

Proposition 5.11

$(-1+1) x=0$	$(-1) x+1 x=0$	$0((-x)+x)=0$	$0 x=0$	$(-1)(-x)=1 x$	$(-1) x+x=0$

QUESTION 3 Not yet answered Marked out of 10.00

Let X be the set $\{a+b i: a, b \in\{1, \ldots, 8\}\}$. That is, $X=\{1+i, 1+2 i, \ldots, 1+8 i, 2+i, \ldots, 8+8 i\}$.
Let R be the relation $\left\{(x, y) \in X^{2}:|x|=|y|\right\}$. Here $|\mid$ means the complex modulus, $| a+b i \mid=$ $\sqrt{a^{2}+b^{2}}$. You may assume that R is an equivalence relation.

Write down the equivalence class $[1+7 i]_{R}$. Write the elements in increasing order of their real part (e.g. if you get the answer $\{3+i, 2+4 i\}$, you should enter $\{\mathbf{2}+4 i, \mathbf{3}+i\}$.)

Answer:

QUESTION 4

Not yet answered Marked out of 10.00

Calculate $[43]_{140^{-1}}$, and express it in the form $[b]_{140}$ where $0 \leq b<140$. What is b ?

Answer: \square

QUESTION 5

Recall the Division Rule for Polynomials (Theorem 2.12) for real coefficients:

Let f and g be two polynomials in $\mathbb{R}[x]$, with $g \neq 0$. Then there exist polynomials q and r in $\mathbb{R}[x]$ such that $f=q g+r$, and either $r=0$ or deg $r<\operatorname{deg} g$.

We proved this by induction. In the inductive case of the proof, we applied the inductive hypothesis to two polynomials we called f^{*} and g, to produce two polynomials q^{*} and r^{\star}. Suppose $f=21 x^{3}+59 x^{2}+23 x+40$ and $g=3 x+8$. Find f^{*}. Enter the leading coefficient of f^{*} (that is, the coefficient of the nonzero term with greatest exponent).

Answer:

QUESTION 6

Not yet answered Marked out of 10.00

The statement below is the Fundamental Theorem of Arithmetic with the condition that p_{1}, ..., p_{k} must be different primes deleted. This statement is false.

Every positive integer n can be written as a product $n=p_{1}{ }^{e_{1}} \cdot \ldots \cdot p_{k}{ }^{{ }^{e_{k}}}$ where p_{1}, \ldots, p_{k} are prime numbers and e_{1}, \ldots, e_{k} are positive integers. This expression is unique up to reordering of the factors $p_{i}{ }_{i}$.

Why is the statement false? Choose the option that is true and contradicts the above statement.

Select one:
There is an expression $p_{1}{ }^{e_{1}} \cdot \ldots \cdot p_{k}{ }^{e_{k}}$ of this kind which is not a factorisation of any positive integer n.

There is a positive integer n with more than one factorisation of this kind which the statement counts as different.

There is a positive integer n with no factorisation of this kind.

- There are two expressions $p_{1}{ }^{e_{1}} \cdot \ldots \cdot p_{k}{ }^{e_{k}}$ of this kind which the statement counts as the same, but are factorisations of different positive integers n.

QUESTION 7

Let n be a positive integer such that $\operatorname{gcd}\left(n, 2^{5} \cdot 3^{2} \cdot 5\right)=2^{3} \cdot 3^{2}$. Suppose the prime
factorisation of n is $n=2^{e} \cdot 3^{f} \cdot 5^{g} \cdot \ldots$. What are the possible values that e and f may have?
The possible values of e are:

The possible values of f are:
QUESTION 8
Let
$A=\left(\begin{array}{ll}{[3]_{7}} & {[0]_{7}} \\ {[4]_{7}} & {[1]_{7}}\end{array}\right)$ and $B=\left(\begin{array}{ll}{[3]_{7}} & {[5]_{7}} \\ & {[5]_{7}} \\ {[3]_{7}}\end{array}\right.$
be matrices in $\mathrm{M}_{2}\left(\mathbb{Z}_{7}\right)$. Compute their product $A B$, and express the top right entry in the form $[a]_{7}$, where $0 \leq a<7$. What is a ?

Answer:

QUESTION 9

Let $f: \mathbb{Z} \rightarrow \mathbb{Z}$ be the function $f(n)=\left(n^{2}+n\right) / 2$.
Suppose we try to define a function $F: \mathbb{Z}_{m} \rightarrow \mathbb{Z}_{m}$ by the definition $F\left([a]_{m}\right)=[f(a)]_{m}$ for any integer a. Whether F is well-defined depends on the value of m. In fact, F is well-defined for one of the two values $m=7$ and $m=8$, and not well-defined for the other. For which one is F well defined?

Select one:8
7

QUESTION $10 \quad$ Not yet answered Marked out of 10.00
What is the multiplicity of $x=-8$ as a solution to the equation $x^{4}+18 x^{3}+93 x^{2}+80 x-192=0 ?$
Answer:

