Recent Modules

8

MTH4104 - INTRODUCTION TO ALGEBRA - 2019/20

Courses > Science and Engineering > MTH4104 - Introduction to Algebra - 2019/20 > Exam > Alternative assessment (May) 2020
 Preview

YOU CAN PREVIEW THIS QUIZ, BUT IF THIS WERE A REAL ATTEMPT, YOU WOULD BE BLOCKED BECAUSE:

This quiz is not currently available

QUESTION 1	Not yet answered Marke	ed out of 10.00
Let <i>R</i> be the relation $\{(x, y) \in \mathbb{R}^2 : y > x + 2\}$ on the set \mathbb{R} o	f real numbers. True or fals	e:
<i>R</i> is reflexive.		
<i>R</i> is symmetric.		
<i>R</i> is transitive.		

QUESTION 2	Not yet answered Marked out of 10.00
Let <i>R</i> be a ring with identity, and	let $x \in R$. Then the equation $(-1)x = -x$ is true in R .
Fill in the white boxes to make a pox to indicate which ring axiom	proof of this fact. For each step in the proof, fill in the grey or other fact is used to derive that step.
Proof:	
• By	, we have .
• By	, we have .
• By	, we have .
• By	, we have .
• By	, we have (-1) <i>x</i> = - <i>x</i> .
the additive identity law Proposition 5.11 $(-1 + 1)x = 0$ $(-1)x + 1x = 0$	the additive inverse law $(-x) + x) = 0$ $0x = 0$ $(-1)(-x) = 1x$ $(-1)x + y = 0$
QUESTION 3	Not yet answered Marked out of 10.00
QUESTION 3 Let <i>X</i> be the set $\{a + bi : a, b \in \{1, .\}$	Not yet answered Marked out of 10.00 , 8} }. That is, <i>X</i> = { 1+ <i>i</i> , 1+2 <i>i</i> ,, 1+8 <i>i</i> , 2+ <i>i</i> ,, 8+8 <i>i</i> }.
QUESTION 3 Let X be the set $\{a + bi : a, b \in \{1, .$ Let R be the relation $\{(x, y) \in X^2 : .$ $\sqrt{a^2 + b^2}$. You may assume that	Not yet answered Marked out of 10.00 , 8} }. That is, $X = \{ 1+i, 1+2i,, 1+8i, 2+i,, 8+8i \}$. $x = y $ }. Here means the complex modulus, $ a + bi = \frac{1}{2}R$ is an equivalence relation.
QUESTION 3 Let X be the set $\{a + bi : a, b \in \{1,, b \in K^2 : , v, c \}$ Let R be the relation $\{(x, y) \in X^2 : , v, a^2 + b^2\}$. You may assume that Write down the equivalence class real part (e.g. if you get the answe	Not yet answered Marked out of 10.00 , 8} }. That is, $X = \{ 1+i, 1+2i,, 1+8i, 2+i,, 8+8i \}$. $x = y $ }. Here means the complex modulus, $ a + bi =$ R is an equivalence relation. $s [1+7i]_R$. Write the elements in increasing order of their er $\{3+i, 2+4i\}$, you should enter $\{2+4i, 3+i\}$.)

QUESTION 4Not yet answered Marked out of 10.00Calculate $[43]_{140}^{-1}$, and express it in the form $[b]_{140}$ where $0 \le b < 140$. What is b?Answer:

QUESTION 5

Not yet answered Marked out of 10.00

Recall the Division Rule for Polynomials (Theorem 2.12) for real coefficients:

Let f and g be two polynomials in $\mathbb{R}[x]$, with $g \neq 0$. Then there exist polynomials q and r in $\mathbb{R}[x]$ such that f = qg + r, and either r = 0 or deg $r < \deg g$.

We proved this by induction. In the inductive case of the proof, we applied the inductive hypothesis to two polynomials we called f^* and g, to produce two polynomials q^* and r^* .

Suppose $f = 21x^3 + 59x^2 + 23x + 40$ and g = 3x + 8. Find f^* . Enter the leading coefficient of f^* (that is, the coefficient of the nonzero term with greatest exponent).

Answer:

QUESTION 6

Not yet answered Marked out of 10.00

The statement below is the Fundamental Theorem of Arithmetic with the condition that p_1 , ..., p_k must be *different* primes deleted. This statement is false.

Every positive integer n can be written as a product $n = p_1^{e_1} \cdot ... \cdot p_k^{e_k}$ where $p_1, ..., p_k$ are prime numbers and $e_1, ..., e_k$ are positive integers. This expression is unique up to reordering of the factors $p_i^{e_i}$.

Why is the statement false? Choose the option that is true and contradicts the above statement.

Select one:

- O There is an expression $p_1^{e_1} \cdot ... \cdot p_k^{e_k}$ of this kind which is not a factorisation of any positive integer *n*.
- O There is a positive integer *n* with more than one factorisation of this kind which the statement counts as different.
- O There is a positive integer *n* with no factorisation of this kind.
- O There are two expressions $p_1^{e_1} \cdot ... \cdot p_k^{e_k}$ of this kind which the statement counts as the same, but are factorisations of different positive integers *n*.

UESTION 7	Not yet answered Marked out of 10.00
Let <i>n</i> be a positive integer such that gcd(<i>n</i> , 2	$2^5 \cdot 3^2 \cdot 5) = 2^3 \cdot 3^2$. Suppose the prime
factorisation of <i>n</i> is $n = 2^e \cdot 3^f \cdot 5^g \cdot \dots$. What	are the possible values that <i>e</i> and <i>f</i> may have?
The possible values of <i>e</i> are:	
The possible values of <i>f</i> are:	
UESTION 8	Not yet answered Marked out of 10.00
Let	
$A = \begin{pmatrix} [3]_7 & [0]_7 \\ [4]_7 & [1]_7 \end{pmatrix} \text{ and } B = \begin{pmatrix} [3]_7 & [5]_7 \\ [5]_7 & [3]_7 \end{pmatrix}$ be matrices in M ₂ (\mathbb{Z}_7). Compute their production form [<i>a</i>]_7, where $0 \le a < 7$. What is <i>a</i> ?	uct <i>AB</i> , and express the top right entry in the
Answer:	
UESTION 9	Not yet answered Marked out of 10.00
Let $f: \mathbb{Z} \to \mathbb{Z}$ be the function $f(n) = (n^2 + n)/2$.	
Suppose we try to define a function $F : \mathbb{Z}_m$ — integer a . Whether F is well-defined depend one of the two values $m = 7$ and $m = 8$, and m well defined?	→ \mathbb{Z}_m by the definition $F([a]_m) = [f(a)]_m$ for any ds on the value of m . In fact, F is well-defined for not well-defined for the other. For which one is F
Select one:	
8	
○ 7	
UESTION 10	Not yet answered Marked out of 10.00
What is the multiplicity of <i>x</i> = -8 as a solutio	n to the equation $x^4 + 18x^3 + 93x^2 + 80x - 192 = 0$?
Answer:	