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Question 1. [8 marks] Let f , g ∈ R[x] be polynomials, with deg g > 0.

(a) The division rule for polynomials states that f can be divided by g to produce
a quotient q and remainder r. Write down the two conclusions that the division
rule states about q and r. [2]

(b) How do we tell, from q and r, whether g divides f ? [2]

(c) Suppose that deg f = 8, and (x − 1)3 divides f . What can be said about the
multiplicity of x = 1 as a solution of f (x) = 0? [4]

Question 2. [14 marks]

(a) Define the following terms:

(i) Cartesian product of two sets; [2]

(ii) relation on a set X. [2]

(b) Write down a relation on the set {1, 2, 3} which is reflexive and symmetric but
not transitive. [4]

(c) Let S be the relation on the set R \ {0} defined by

xSy if and only if y/x ∈ Q.

Prove that S is an equivalence relation. [6]

Question 3. [22 marks]

(a) Define the greatest common divisor of two positive integers. [2]

(b) Use the extended Euclidean algorithm to compute the greatest common divisor
d of 206 and 64, and to find integers x and y such that 206x + 64y = d. [16]

(c) Write down another pair of integers (x�, y�) such that 206x� + 64y� = d, different
from the pair (x, y) you found in part (b). [4]
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Question 4. [16 marks]

(a) Give the names of all axioms that must be satisfied in order for a set R with two
operations + and · to be a ring. [Do not write out what the axioms say.] [6]

(b) Name an example of a ring that is not a commutative ring. [2]

(c) Let R be a commutative ring. Prove that the identity x2 − y2 = (x + y) · (x − y)
is true for all x and y in R. Name the axiom or proposition that you are using at
each step of the proof. [8]

Question 5. [14 marks]

(a) Define what it means for an element of a ring with identity R to be a unit. [2]

(b) List all units in the ring Z12. [4]

(c) Is the matrix
�

2 1
−1 2

�
a unit in the ring M2(Z)? Justify your answer. [4]

(d) Is the matrix
�
[2]12 [1]12
[−1]12 [2]12

�
a unit in the ring M2(Z12)? Justify your answer. [4]

Question 6. [16 marks] Let g be the element

(1 9 11 4 6)(2 5 8)(3 10 7)

of S11, written in cycle notation, and let h be the element
�

1 2 3 4 5 6 7 8 9 10 11
7 4 2 11 6 1 5 9 3 10 8

�

of S11, written in two-line notation.

(a) Write g in two-line notation. [3]

(b) Find a permutation k such that k ◦ g = h. Write k in two-line notation. [8]

(c) Define the order of a permutation. [2]

(d) Write down the order of g. [3]
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Question 7. [10 marks]

(a) Define what it means for a set G with a binary operation ∗ to be a group,
including the statements of every axiom you cite. [4]

(b) Let
S = {a + bi ∈ C : a, b ∈ R, a2 + b2 = 1}

be the set of all complex numbers of modulus 1. Prove that S is a subgroup of
the multiplicative group C×. [6]

End of Paper.
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