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For Question 1 of this exam, only your final answers will be marked; partially correct answers
will be awarded partial marks. For all other questions, you should show your working and
carefully justify every step, except where you are simply asked to “State” or “Write down” a
result.

Question 1. [40 marks]

(a) Find the first two terms and the sum of the series

∞

∑
n=0

5
2n .

[5]

(b) State whether the series
∞

∑
n=1

1
n + 4

diverges or converges, indicating which test justifies your answer. [5]

(c) Find the Taylor polynomials of orders 0, 1, and 2 for the function

f (x) = cos(−x),

about the point x = 0. [5]

(d) Evaluate

lim
(x,y)→(2,2)

x 6=y

x2 − y2

x− y

or state that the limit does not exist. [5]

(e) For the function
g(x, y) = exy ln y,

compute gx and gy. [5]

(f) Calculate the gradient vector of

h(x, y, z) = 3e−x + sin(2y) + 4
√

z + 1

at the point (0, 0, 0). [5]

(g) Transform the integral ∫ 2

0

∫ √4−y2

0
(x2 + y2)3 dx dy

into an equivalent polar integral. [Evaluation of the integral is not required here.] [5]

(h) Evaluate the triple integral ∫ π/2

π/4

∫ π

0

∫ e

−e
y sin z dx dy dz.

[5]

c© Queen Mary University of London (2018)



MTH4101 / MTH4201 (2018) Page 3

Question 2. [20 marks]

(a) Consider the following (erroneous) definition.

“The sequence {an} diverges to infinity if for some number M there is an
integer N such that for all n larger than N, an > M.”

(i) Identify and correct the error in the above definition. [2]

(ii) Write down a correct definition for a sequence which diverges to negative infinity. [2]

(b) A sequence is defined recursively by

b1 = −1, bn+1 =
4n− 5
2n− 3

bn.

(i) Find the values of b2, b3, b4, and b5. [5]

(ii) State whether this sequence is monotonic and whether it is bounded. [2]

(iii) State whether the sequence diverges to infinity, diverges to negative infinity, or
neither. [A proof is not necessary here.] [2]

(iv) Use the Ratio Test to show whether the series ∑∞
n=1 bn converges or diverges. [7]

Question 3. [20 marks]

(a) State the First Derivative Test for Local Extreme Values (for a function of two
variables). [3]

(b) Find all critical points of the function

f (x, y) = x2 − 3xy + 3y2 − 3x + 3y + 1.

Identify whether each point you find is a local maximum, local minimum, or saddle
point, and find the value of the function there. [10]

(c) Find the two numbers u and v, with u ≤ v, for which∫ v

u
(6− x− x2) dx

has its largest value. [7]
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Question 4. [20 marks]

(a) Solve the system u = 2x, v = y− 2x to find expressions for x and y in terms of u and v.
Use these expressions to find the Jacobian ∂(x, y)/∂(u, v). [6]

(b) Consider the integral ∫ 1

0

∫ 2x+1

2x
(2y− 4x) dy dx.

(i) Sketch the region of integration. [3]

(ii) Use the transformation in (a) to evaluate the integral. [8]

(iii) Demonstrate that you get the same answer by integrating directly with respect to y
and then x. [3]

End of Paper.
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