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Question 1.

(a) Calculate a1, a2, and a3 for the sequence

an =
n+(−1)n

2n

and then obtain the limit of an as n→ ∞. [7]

(b) Find the sum of the series

∞

∑
n=1

(
2
n2 −

2
(n+1)2

)
.

[7]

(c) Evaluate

lim
(x,y)→(0,0)

ex siny
y

. [7]

(d) For the function
f (x,y) = x ln(xy)+ ycosx,

compute fxy and fyx, and show that these are equal. [7]

(e) Find all the local maxima, local minima, and saddle points of the function

g(x,y) = 2+4x− x2−3y2. [7]

(f) Sketch the region of integration for∫ 9

0

∫ √y

y/3
dxdy

and write an equivalent integral with the order of integration reversed. [7]

(g) Find the average value of h(x,y,z) = 2x+3y2−8z3 over the rectangular solid
in the first octant bounded by the coordinate planes and the planes x = 2,
y = 2, and z = 1. [7]

(h) Solve the initial value problem

dy
dx

= 4x3ey, y(0) = 0,

giving the solution in implicit form. [7]
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Question 2.

(a) By calculating derivatives of the function

f (x) =
1

1+2x
,

obtain its Maclaurin series, explicitly including terms up to x3. State the
range of x for which your series converges to f (x). [7]

(b) Show how your result in (a) can be used to obtain the Maclaurin series for
ln(1+2x) and give a formula for the nth term of this series. [4]

Question 3.

(a) Calculate the gradient vector of the function g(x,y) = ey sinx at the point
(0,1). Use your result to calculate the directional derivative of this function
at (0,1) in the direction of the unit vector v = (1/

√
2)i+(1/

√
2)j. [6]

(b) Now consider a general function f (x,y). State the definition, in terms of a
limit, for the derivative of f at P0(x0,y0) in the direction of the unit vector
u = u1i+u2j. [2]

(c) Using the definition from part (b), evaluate the derivative of g(x,y) = ey sinx
at (0,1) in the direction of the unit vector w = (1/

√
2)i− (1/

√
2)j. [3]

Question 4.
Consider the function

f (x,y) =
1

(4− x2− y2)
.

(a) Integrate f (x,y) over the disc x2 + y2 ≤ 1. [8]

(b) Does the integral of f (x,y) over the disc x2 + y2 ≤ 4 exist? Give reasons for
your answer. [3]

Question 5.

(a) Use the Integral Test to determine for which values of p the series
∞

∑
n=3

1
n(lnn)p

converges, and for which it diverges. [8]

(b) Explain why the Ratio Test cannot be used to determine the convergence of
this series. [3]

End of Paper.
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