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Question 1.

(a) Obtain the limit as n — oo for the sequence

=" [7]

(b) Use a suitable test to determine whether the series
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—1)k
Z( ) 3lnk
k=2
converges or diverges. [7]
(c) Consider the function
2 2
Y- —2xy+x
fly) ==———, z#y.
r—=Yy
Find the limit of f as (z,y) — (2,2). (7]

(d) Find all first-order partial derivatives of the function
flz,y) =22 [7]
(e) Find the directional derivative of the function

f(x,y,z) = cos(yz)e”

at the point (0, 0, 0), in the direction of the vector A = i + 2j — 3k. (7]
(f) Find the area of the region enclosed by y?/2 = x and 2y = . [7]
(g) Evaluate the integral N
/ / e~ @) 4y dy
by transforming to polar coordinates. [7]

(h) Solve the differential equation

dy oy
dz —¢

by giving the solution in implicit form. [7]
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Question 2. Consider the function

1
(a) Find the Taylor series generated by f at x = 2. [6]
(b) Where, if anywhere, does the series converge to f? [5]

Question 3. Assume that F(x,y) = 2° — 2y* + xy = 0 defines y as a differentiable
function of x.

(a) Differentiate the whole equation with respect to = and then solve for dy/dx.  [4]
(b) State the formula for implicit differentiation. [3]

(c) Use this formula to find dy/dz at the point (—1,1). (4]

Question 4. The surfaces
f(r,y,2) =2 +y*—2=0 (cylinder)
and
g(x,y,2) =x+2—4=0 (plane)

meet in an ellipse £. Find the parametric equation for the line tangent to £ at the
point Py(1,1,3). [11]

Question 5. Find all locations and values of the local maxima, local minima, and
saddle points of the function
x? 5
flz,y) = 5+ .

(11]

End of Paper.
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