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Exercise 5.

Problem 5.1. Consider a stationary AR(1) process
Xe = dXi 1 +ey,
where the process ¢; is white noise process with zero mean and variance
Be? = o2, and |¢] < 1
Prove the following
2
(ii) VGT(Xt) E i'gfp?
(iii) Show that autocovariance function is

Crg ¢k) k=0:1)2:""

"=
Show that autocorrelation function

pe=¢%, k=012

Solution:

(i) We take expectation of both side of AR(1) equation:
E[Xt] = E[¢>Xf,_1 + Sg]

E[¢X: 1] + Eley]

= ¢E[X;]

since Ele;] = 0. Since for |¢| < 1, X, is a stationary process, then E[X;] =
E[X,.1] = p does not depend on time ¢. Therefore

p=¢u, or ”=T-_¢=0'



(i1) We showed that EX; = 0. So, by definition

Var(X) = E(X. - E[X))? = EX? = B(¢X,1 + &)’
= E($*XP, + 20X, 16+ €2)
= $EX] | +20E[X, 1)) + E[}).

Since time series X, is stationary, its variance remains constant: Var(X,;) =
EX} = EX? | = o}. Moreover, future is not corrclated with the past, so
B[X; 5] = 0. Thus we obtain

2
. o2
0% = ¢*o2 + o, or o} = m
(iii). Since EX; =0, then for k > 1,

Y = CO'U(Xt, thk) = E[(.Xt . EXt)(Xt-—k . EXt__k)]
B E[XtXt._k].

Since X; = ¢X,_1 + £, then

W = E{XeXe k] = El(6Xe—1 + ) Xoi]
= PE[Xp1 X k] + Blee X4
= QE[X; 1X;-k]

because white noise £, is uncorrelated with the past and therefore E [€eXi-i) =
0. Because of stationarity,

C Tk = COU(Xt,Xt—k) . E[XtXt—k]s Yk—1 = E[Xt—IXt—k]

and we obtain , :
Yo = Py-1, forall k>0

From here, we deduce that
M= Pz = .. = ¢y, k>0,
By definition pg == v, /9. Then

po=1



o = ¢*.

Note that differently from autocovariance 7., autocorrelation p; does not
depend on the variance of the white noise &;.

Problem 5.2. A national bank started accepting electronic checks over
the Internet in January 2006. Prior to that data, only paper checks were
accepted. A local branch collected the data on weekly number of paper checks
processed at the branch from January 2004 to January 2008. Consider only
the first two years of that data set, and fit an appropriate ARMA model.

Solution: ACF and PACF analysis shows that we can fit either AR(1)
model or MA(3) model. Here the rational selection would be AR(1) (simplest
model).

Note: E-views provide no option for automatic selection of the order p, g for
fitting ARMA (p,q) model. If we wont to use AIC model selection criterion
or BIC(Schwarz) criterion, we have to do that manually: fit different models
and check which minimizes AIC or BIC.

For example, fitting AR(1), MA(3) and ARMA(1,1) models to this data we
obtain the following values of AIC and BIC criterions (see outputs below):

AC  Bic Sc/l’\w%)

AR(1)  8.7383  8.789
MA(3) 8771 8873
ARMA(1,1) 874  8.8824

Dale: 02114112 Time; 17:68
Samplie: 1105
Included observations: 105

Autocorrelation Partial Cotrelation AC PAC Q-Stat Prob

I I 1 0613 0.613 40.577 0.000
I I 2 0410 0.056 58954 0.000
I [ 3 0274 0.003 67.201 0.000
[ i s I 4 0119 -0.102 68.765 0.000
L (R L 5 0064 0.026 69.220 0.000
b L 6 -0.025 -0.086 69.290 0.000




o AIC criterion suggest the following order: AR(1) is fitting best, than
MA(3), then ARMA(1,1).

e BIC criterion suggests the following order: AR(1) is fitting best, then
ARMA(1,1), than MA(3).
So for fitting to the data and forecasting we may go for an AR(1) model.
For illustration, we also fit MA(3) and ARMA(1,1) models.

Fitting AR(1) model and using it for forecasting.

The below outputs of estimation of AR(1) model, residual check and fore-
casting show:

e The AR(1) model is

Xe=498.18 4 0.61X,; + &, o = 18.92,

e AR(1) coefficient ¢ = 0.615 is significant

e residuals are not correlated, so the model is fitting well

o Forecasting graph shows the values out of the sample forecasts, i.e. 1,2,
3 step ahead forecasts.

Observe the following pattern: when the step & increases, the forecast
reverts to the mean which is about 500, as it should be according the
theory.

The graph also shows 95% confidence band for the forecasted values.



Dependent Variable: SERIES(O1

Method: Least Squares

Date: 02/14112 Time: 18:35 AR(1) PROCESS
Sample (adjusted): 2105

Included ohsetvations: 104 after adjustments

Convergence achieved afler 3 Iterations

Variable Coeflicient Std. Error t-Statistic Prob.

C 498.1845 4823037 103.2927 0.0000
AR(1) 0.615130 0.077790 7.907574 0.0000
R-squared 0.380051 Mean dependentvar 498.0769
Adjusted R-squared 0.373973 S.D.dependentvar 23.92451
S.E. of regression 18.92952 Akalke info criterion 8.738366
Sum squared resid 36548.32 Schwarz criterion 8.789219
Log likelthood -452.3950 Hanhan-Quihbn critet, 8.758868
F-statistic $2.52972 Durbin-Watsan stat 2.063758

Prob(F-statistic) 0.000000

i Inverted AR Roots .62
Residual diagnostic

- Date: 02114112 Time: 19:02
Sample: 2105
Included observations: 104

- Q-stalistic probabilifies adjusted for 1 ARMA term(s)

Autocorrelation Partial Correlation AC PAC Q-Stat Prob

U | 1 -0.055 -0.055. 0.31586

[ I 2 0023 0.020 0.3781 0.539
[ 3 0.066 0.069 0.8581 0.651
L 4 -0.077 -0.071 1.5087 0.680
: | 5 0.054 0.044 18320 0.767
I

|
I
i
[
i
{ 6 -0.019 -0.015 1.8725 0.866
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Fitting MA(3) model and using it for forecasting.

The below outputs of cstimation of MA(3) model, residual check and fore-

casting show:

e The MA(3) model is

Xy =497.7 4 0.589%,_; + 0.3667¢; 5 + 0.2643¢,_3 + €,

e All MA(3) coefficients are significant

e residuals are not correlated, so the model is fitting well

oe = 19.07,

e Porecasting graph shows that forecast reverts to the mean ~ 500 after

3 steps, as it should be according

the theory.

That means, using MA(3) model for forecasting, forecasts with step
k =4,5,.... ahead will be equal to the (sample) mean.

The graph also shows 95% confidence band for the forecasted values.
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Dependent Vatiable: SERIES01
Method: Least Squares

Date: 02/14/12 Time: 18:43
Sample:1 105

Included observations: 106

Convergence achieved after 8 iterations
MA Backcast: -2 @
Variahle Coefiicient Std. Error t-Statistic Prob,
C 497.7035 4.084209 121.8605 0.0c00
MA(T) 0.589871 0.097044 6.078391 0.0000
MA(2) 0.366740 0.106790 3.434226 0.0009
MAL3) 0.246367 0.097697 2521743 0.0132
R-squared 0.381726 Mean dependentvar 497.8667
Adjusted R-squared 0363362 S.0.dependent var 23.90850
S.E. of regression 19.07490 Akaike info criterion 8771974
Surn squared resid 36749.04 Schwarz criterion 8.873078
Log likelihood -456.5287  Hannan-Quinn criter. 8.812944
F-statistic 20.78602 Durbin-Watson stat 1.968758
Prob{F-statistic) 0.000000
Inverled MA Roots .02-B3i 02+.63] ;.63




Date; 02/14/12 Time; 18:46

LA

Sample: 1105
Included observations: 105
Q-statistic probabilities adjusted for 3 ARMA term(s)

Autocorrelation Partial Correlation AC

PAC Q-Stat Prob

1 0.007
2 0.024
3 0.051
4 0.0M
5 0.054
6 -0.024

0.007 0.0G058
0.024 0.0685
0.050 0.3517
0.070 0.9165 0.338
0.052 1.2473 0.536
-0.030 1.3126 0.728
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Forecast: SERIES01F
Actual; SERIESO1
Forecast sample: §3 104
Included observatlons: 52
Root Mean Squarsd Error
Mean Absolute Error
Mean Abs. Percent Error
Theil Inequality Coefficient

Bias Proportion
) Variance Proportion
Cavariance Proportion

21,33963
156.94591
3.181944
0.021347
0.019435
0.509666
0.470898
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Fitting ARMA(1,1) model and using it for forecasting.

The below outputs of estimation of ARMA(1,1) model, residual check and
forecasting show:

¢ The AR(1) model is

X, =498.58 + 0.71X,_y + &, — 0.017e,_y, 0. = 18.93,

e AR(1) coefficient ¢ = 0.71 is significant, the moving average coefficient
0 == —0.1722 is not significant. That indicates we should use AR(1)
model instead of ARMA(L,1). It tells us, we are overfitting.

e residuals are not correlated, so the model is fitting well.
e Forecasting graph shows the values out of the sample forecasts, i.e. 1,2,
3 step ahead forecasts.

When the step k increases, the forecast reverts to the mean which is
about 500, as it should be according the theory.

The graph also shows 95% confidence band for the forecasted values.
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Dependent Yatiable: SERIES01
hethod: Least Squares

Date: 02/14/12 Time: 18:21
Sample (adjusted): 2105
Included observations: 104 after adjustments
Convergence achieved after 6 iterations

MA Backcast: 1

Varlable Coefliclent  Std. Eror  t-Statistic Prob.

C 498.5841 5.382869 9262423 0.0000
AR(1) 0713541 0.108178 6.596017 0.0000
MA(T) -0.172267 0.154165 -1.117422 0.2665
R-squared 0.386071 Mean dependent var 498.0769
Adjusted R-squared 0.373914 S.D. dependenivar 2392451
S.E. ofregression 18.93041 Akaike info criterion 8.747838
Sum squared resid 36194.39 Schwarz criterion 8824119
Lag likelihood -451.8876 Hannan-Quinn criter, 8778741
F-statistic 31.75713 Durbin-Waison stat 1.927610
Prob(F-statistic) 0.000000
Inverted AR Roots A1

Inverted WA Roots 17




RESIDUAL DIAGNOSTIC
ARMA(L,1)

Date: 0211412 Time: 21:40
Sample: 2105
Included observations: 104
Q-statistic probabllities adjusted for 2 ARMA term(s)

Autocorrelation

Partial Correlation

AC

PAC  Q-Stat

Prob

I |
1 |
| 1
| |
I I
1 i

| |
| |
| |
| |
1 U
| |

1 0017 0.017
2 -0.022 -0.022
3 0.022 0.023
4 -0.090 -0.091
5 0.033 0.038
6 -0.032 -0.039

0.0306
0.0830
01376
1.0254
1.1479
1.2643

0.711
0.599
0.766
0.867

Using the whole sample to forecast
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