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Exercise 4.

Problem 4.1.

Determine whether the followmg AR processes are sta.tlona.ry
(a) Xy = =10+ 0.3X—1 + 0.5X;-2 + &;.
(b) X =35+ 0.3X¢—1 +0.7X; 2+ &;.

Solution: For AR(2) process
Xi=a+ @1 Xo1 + 62X 2+ 6
to be stationary it is required that coeflicients satisfy the the relations:

o+ <1
$o— 1 <1
1< <1,

(a) To verify if the process (8) is stationaxy we cﬁeck

d2+ ¢ =05 +0.3 =08 <1 .
¢o—pr=05-03=02<1, —1<¢pg=05<1.
All conditions are satisfied. Therefore process (a) is stationary.

(b) To verify if the process (b) is stationary we check

P2+ =074+03=1 .

2= =07-03=04<1, -1<¢=07<1.

Since condition ¢ + ¢; < 1 is not satisfied, the process (b) is non-
stationary.



Problem 4.2. Find the mean of the following stationary AR processes,
where €, is a white noise with zero mean and variance o,

(8) Xy =404 0.5X; | +¢,.

(b) X; = 20+ 02X + 0.6X,_3 + €.

Solution. (a) First we find the mean of an AR(1) process X; = a+¢X;_1+&;
where |¢| < 1 Such time series is stationary.
We take expectation of both sides of AR(1) equation:
E[Xt] = E[a, -+ ¢Xt_1 + E¢]
a+ E[¢pXy ] + Efe]
= a+¢B(X; )

since Ele;] = 0. Since X, is a stationary process, then E[Xt] E[X; 1] = ux
does not depend on time t. Therefore

a

px =a+dux, or Px=1—__—d‘5’
Since a = 40 and ¢ = 0.5, we obtain '
- 40
wx =105 =%

(b) First we find the mean of AR(2) process
Xe=a+¢1Xe-1 + 2 Xs2 + €0

Again, since X; is stationary, then EX; = ux does not depend on . Teking
expectation of both sides, we get '
BlXy] = Ela+ ¢:1Xe1+ ¢2Xe3+¢i)
a-+ E[¢1X¢_1] + E[¢2Xt_2] -+ E[Gg]
= o+ ¢ E[Xi1]+ 2B[X_y).

So, )
A a
. + + ] - = .
Bx =0+ dipux + daix, or px T a—n
Now, a = 20, ¢; = 0.2, ¢ = 0.6, We obtain
20 20

PX=1"052-06 02 00
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Problem 4.3. Assume that sample size is N = 400, and the sample auto-
correlation function at lags 1,2, ...,9,11,12 is taking values

-0.24,0.32, ~0.15, 0.12, 0.001, 0.05, 0.01, 0.011, 0.009, 0.04, 0.002, 0.003.
while PACF is taking values

0.4;0.2,—-0.05,0.012,0.04,0.015,0.011, 0.031, 0.0019, 0.024, 0.0022, 0.0033.

(i) Test at 5% significance level, that this time series is a white noise.

(ii) What p would you use fitting AR(p) model to this data? Explain
your decision. .

(iii) What g would you use fitting MA(q) model to this data?

(iv) Which model, AR or MA, would you apply?

Solution. (i) To answer this question, we test for significance of correlation
pr 8t lags k > 1 at significance level 5%.

o Correlation at lag k is significant, if [5s| > 2/v/N, where N is the
number of observations.

o If |3x| < 2//N, then correlation at lag k is not significantly different
" from 0. .

We have 2/V/N = 2 = 2/v/400 = 0.1. The following graph of ACF shows
significant correlation at lags 1,2,3,4. So the time series is not a white noise.
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(ii ) Fittting AR(p) model to the data, we select the p as the largest lag at
which the PACF is significant. The rule to determine if PACF is significant
at lag k > 1 is the same as for ACF. Such rule can be used because the PAFC
of the AR(p) model becomes 0 for lags greater than p.

The graph of PACF below shows that the last significant PACF is at lag 2.
So we fit to the data ]AR(Z) model:

Xe=a4 1 X1+ 9aXi 2+ €.
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(if) Fittting MA(q) model to the data, we select the ¢ as the largest lag at
which the ACF is significant. This rule can be used because the AFC of the
MA(q) model becomes O for lags greater than q.

We above graph shows that the Jast significant ACF is at lag 4. So we fit to
the data MA(4) model:

Xo=0+e—betg—+--— 04E¢-4.
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(i) We can fit to the data either AR(2) model or MA(4) model. We gelect
AR(2) model which has smaller number of paramsters.



Problem 4.4.

LI o L
39i Fat‘lhe‘hme Setiés plot ‘and 'cOrrespondmg ACF and PACF plots below, detemune
= thc‘én]crs p a.ﬂdlq ofa'tematwe ARMA(p ) model'that can be used: for this data”
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‘3. 10 Por the time series plot end com:spondmg ACF and PACF plots below; determine
. the orders p and ¢ ‘of a tentative ARMA(p, g) model that. can be used for this data
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'Problem 4.5. Consider the monthly log returns of CRSP equally-weighted
index 1962 to 1999 for 466 observations
(i) Build an AR model for the series and check for the fitted model.
(ii) Build an MA model for the series and check for the fitted model.
(iii) Compare the fitted AR and MA models. .

Solution (i) PACF suggest fitting AR(1) model.

Date; 02/07/12 Time: 11:35
Sample: 1 456
Included observations: 456

Autocorrslation Partlal Correlation AC PAC @-Stat Prob

I 1 0226 0.226 23518 0.000
-0.010 -0.065 23.564 0.000
-0.038 -0.022 24.234 0.000
-0.016 -0.002 24.349 0.000
0009 0.012 24.388 0.000
-0.009 -0.016 24.424 0.000
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Fitting AR(1) model : we get

X, =1.06+0.227X, 1 + &, 0O =5.4655

Estimation

Dependent Varlable: BERIESO1
Method: Least 8quares

Date: 02J07/12 Time: 16:32
Sample (adjusted): 2 456
Included observations: 455 after adjustments
Convergence achleved after. 3 lterations

Varable COBmclént Std. Error t-Statistic Prob.

Cc 1.069163. 0.3315168  3.225074 0.0014

AR(1) 0.227085 0.045629 4.855257  0.0000
R-squared 0.051417 Mean depandentvar 1.0683580
Ad]usted R-squared 0.049323 8.D. dependentvar © §805513
8.E. of regression 5.465524 Akalke info criterlon 6.238183
Sum squared resid . 13531.98 Schwarzcriterion 6.257294
Log likellhood -1417.414 Hannan-Quinn ctiter. 6.246318 ~
F-statistic - 9455457 Durbin-Watson stat 1.968754
Prob(F-statistic) . D.000001
Inverted AR Roots .23 '

Residuals Identification

Date: 02/07/12 Time: 16:34

Sample: 2 458

Included chservations: 455

Q-statistic probablilties adjusted for 1 ARMA term(s)

Autocomrelation Partial Correlation AC PAC @Q-Stat Prob

I 1 0.015 0.015 0.0980

] 2 -0.055 -0.056 1.5119 0.219
I 3 -0.037 -0.036 2.1501 0.341
I 4 -0:012 -0.014 22169 0528
] 5 0.015 0011 23150 0.678
I

I
I
I
I
I
I 6 0.002 -0.001 23172 0.804
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Fitting AR(2) model: since PACF at lag 2 is rather large, we try also to fit

AR(2) model:

Xe=1.0640.241X,_; — 0.064,,

o = 0.466.

The coefficient —0.064 is not significant. Hence AR(1) is preferable over

AR(2).
Variable Coefficlent Std. Error 1-Btatlstic Prob.
o] 1.063964 0.311843 3.411856 0.0007
AR(1) 0.241579 0.047036 5.136077 0.0000
AR(2) -0.064260 0.047121  -1.363735 0.1733
R-squared 0.055353 Mean dependent var 1.062548
Adjusted R-squared 0.051164 S.D.depsndentvar 5.611654
8.E. ofregression 5466211 Akaike info criterion 6.241635
Sum squared resld 1347564 Schwarz criterlon 6.266847
Log likellhood -1413.851 Hannan-Quinn criter. 6.252356
F-statistic 13.21356 Durbin-Watson stat 2.000597
Prob(F-statistic) 0.000003
Inverted AR Roots 12-22] A2+.224
Fitting MA(1) model: we get
Xe=106+¢; + 0.2390¢g,_,, o = 5.4b
Varlable Coefficient  Std. Error  t-Statistic Prob.
C 1.061394 0.316180 3.356929 0.0008
MA(1) 0.239034 0.045587 6.243483 0.0000
R-squarsd 0.054539 Mean dependent var 1.059511
Adjustad R-squared 0.052457 8.D. dependentvar 5.600024
S.E. of regrasslon 5.481166 Akalke Ihfo criterlon 6.233913
Sum squared resid - 13480.71 Schwarz criterion 6.251994
Log likelthood -1419.332 Hannan-Quinn criter. 6.241035
F-statistic 26.18910 Durbin-Watson stat 1.995328
Prob(F-statistic) 0.000000
Inverted MA Roots -.24
Autocarrelation Partlai Correlation AC PAC Q-Stat Prob
1 1 1 0.001 0.001 0.0008
1 1 2 -0.002 -0.002 0.0020 0.984
i i 3 -0.035 -0.035 0,5830 0.747
I K 4 -0.011 -0.011 0.6370 0.888
i Bl 5 0012 0.012 07063 0.951
i i B 0.7165 0.982

-0.005 -0.008

MA

Estimation

Residual identificafinn



(iii): Models AR(1) and MA(1) seem to fit equally well. We may select
AR(1) which is more intuitive.






