ECOM073: Topics in Financial Econometrics

Queen Mary, University London, 2012-13

Lecturer: Liudas Giraitis, CB301, L.Giraitis@qmul.ac.uk

Exercise 4.

Problem 4.1.

Determine whether the following AR processes are stationary.

(a) $X_t = -10 + 0.3X_{t-1} + 0.5X_{t-2} + \varepsilon_t$.

(b) $X_t = 35 + 0.3X_{t-1} + 0.7X_{t-2} + \varepsilon_t$.

Solution: For AR(2) process

$$X_t = a + \phi_1 X_{t-1} + \phi_2 X_{t-2} + \varepsilon_t.$$

to be stationary it is required that coefficients satisfy the the relations:

 $\phi_2 + \phi_1 < 1$ $\phi_2 - \phi_1 < 1$ $-1 < \phi_2 < 1$.

(a) To verify if the process (a) is stationary we check

 $\phi_2 + \phi_1 = 0.5 + 0.3 = 0.8 < 1$

 $\phi_2 - \phi_1 = 0.5 - 0.3 = 0.2 < 1,$ $-1 < \phi_2 = 0.5 < 1.$

All conditions are satisfied. Therefore process (a) is stationary.

(b) To verify if the process (b) is stationary we check

 $\phi_2 + \phi_1 = 0.7 + 0.3 = 1$

 $\phi_2 - \phi_1 = 0.7 - 0.3 = 0.4 < 1, \qquad -1 < \phi_2 = 0.7 < 1.$

Since condition $\phi_2 + \phi_1 < 1$ is not satisfied, the process (b) is non-stationary.

Problem 4.2. Find the mean of the following stationary AR processes, where ε_t is a white noise with zero mean and variance σ_{ϵ}^2 .

(a)
$$X_t = 40 + 0.5X_{t-1} + \varepsilon_t$$
.

(b)
$$X_t = 20 + 0.2X_{t-1} + 0.6X_{t-2} + \varepsilon_t$$
.

Solution. (a) First we find the mean of an AR(1) process $X_t = a + \phi X_{t-1} + \varepsilon_t$ where $|\phi| < 1$ Such time series is stationary.

We take expectation of both sides of AR(1) equation:

$$E[X_t] = E[a + \phi X_{t-1} + \varepsilon_t]$$

$$= a + E[\phi X_{t-1}] + E[\varepsilon_t]$$

$$= a + \phi E[X_{t-1}]$$

since $E[\varepsilon_t] = 0$. Since X_t is a stationary process, then $E[X_t] = E[X_{t-1}] = \mu_X$ does not depend on time t. Therefore

$$\mu_X = a + \phi \mu_X$$
, or $\mu_X = \frac{a}{1 - \phi}$.

Since a = 40 and $\phi = 0.5$, we obtain

$$\mu_X = \frac{40}{1 - 0.5} = 80.$$

(b) First we find the mean of AR(2) process

$$X_{t} = a + \phi_{1}X_{t-1} + \phi_{2}X_{t-2} + \varepsilon_{t}.$$

Again, since X_t is stationary, then $EX_t = \mu_X$ does not depend on t. Taking expectation of both sides, we get

$$E[X_t] = E[a + \phi_1 X_{t-1} + \phi_2 X_{t-2} + \varepsilon_t]$$

= $a + E[\phi_1 X_{t-1}] + E[\phi_2 X_{t-2}] + E[\varepsilon_t]$
= $a + \phi_1 E[X_{t-1}] + \phi_2 E[X_{t-2}].$

So.

$$\mu_X = a + \phi_1 \mu_X + \phi_2 \mu_X$$
, or $\mu_X = \frac{a}{1 - \phi_1 - \phi_2}$.

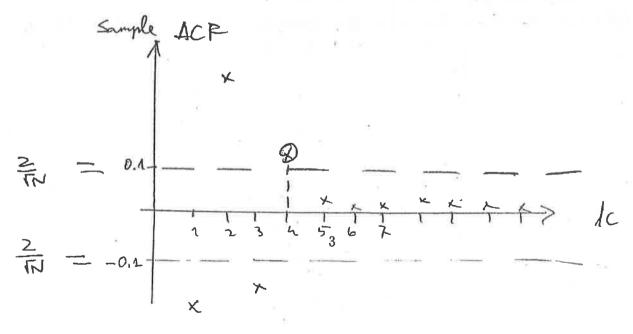
Now, $a=20, \, \phi_1=0.2, \, \phi_2=0.6.$ We obtain

$$\mu_X = \frac{20}{1 - 0.2 - 0.6} = \frac{20}{0.2} = 100.$$

Problem 4.3. Assume that sample size is N = 400, and the sample auto-correlation function at lags 1, 2, ..., 9, 11, 12 is taking values

-0.24, 0.32, -0.15, 0.12, 0.001, 0.05, 0.01, 0.011, 0.009, 0.04, 0.002, 0.003.

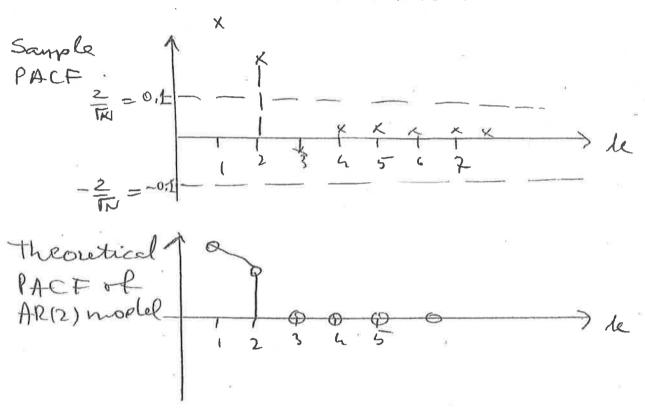
while PACF is taking values


0.4, 0.2, -0.05, 0.012, 0.04, 0.015, 0.011, 0.031, 0.0019, 0.024, 0.0022, 0.0033.

- (i) Test at 5% significance level, that this time series is a white noise.
- (ii) What p would you use fitting AR(p) model to this data? Explain your decision.
 - (iii) What q would you use fitting MA(q) model to this data?
 - (iv) Which model, AR or MA, would you apply?

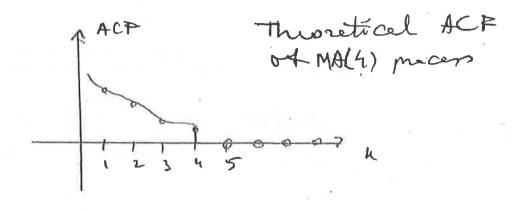
Solution. (i) To answer this question, we test for significance of correlation ρ_k at lags $k \geq 1$ at significance level 5%.

- Correlation at lag k is significant, if $|\hat{\rho}_k| > 2/\sqrt{N}$, where N is the number of observations.
- If $|\hat{\rho}_k| \leq 2/\sqrt{N}$, then correlation at lag k is not significantly different from 0.


We have $2/\sqrt{N} = 2 = 2/\sqrt{400} = 0.1$. The following graph of ACF shows significant correlation at lags 1,2,3,4. So the time series is not a white noise.

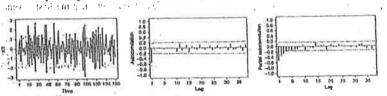
(ii) Fittting AR(p) model to the data, we select the p as the largest lag at which the PACF is significant. The rule to determine if PACF is significant at lag $k \ge 1$ is the same as for ACF. Such rule can be used because the PAFC of the AR(p) model becomes 0 for lags greater than p.

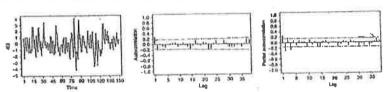
The graph of PACF below shows that the last significant PACF is at lag 2. So we fit to the data |AR(2)| model:


$$X_{t} = a + \phi_{1}X_{t-1} + \phi_{2}X_{t-2} + \varepsilon_{t}.$$

(iii) Fitting MA(q) model to the data, we select the q as the largest lag at which the ACF is significant. This rule can be used because the AFC of the MA(q) model becomes 0 for lags greater than q.

We above graph shows that the last significant ACF is at lag 4. So we fit to the data MA(4) model:


$$X_t = \theta_0 + \varepsilon_t - \theta_1 \varepsilon_{t-1} - \dots - \theta_4 \varepsilon_{t-4}.$$


(iv) We can fit to the data either AR(2) model or MA(4) model. We select AR(2) model which has smaller number of parameters.

Problem 4.4.

3.9 For the time series plot and corresponding ACF and PACF plots below, determine the orders p and q of a tentative ARMA(p,q) model that can be used for this data

3.10 For the time series plot and corresponding ACF and PACF plots below, determine the orders p and q of a tentative ARMA(p,q) model that can be used for this data

Problem 4.5. Consider the monthly log returns of CRSP equally-weighted index 1962 to 1999 for 456 observations

- (i) Build an AR model for the series and check for the fitted model.
- (ii) Build an MA model for the series and check for the fitted model.
- (iii) Compare the fitted AR and MA models.

Solution (i) PACF suggest fitting AR(1) model.

MEViews : [Series: SERIESO). Workfile: MERW6299Hammiller[V]

MEDIE | Edit Object View Proje Quest Options Address Window Help in

View Proje | Object | Properties | Print Name | Freeze | Sample | Ger | Sheet Graph | Shats | Ident |

Date: 02/07/12 Time: 11:35

Sample: 1 456

Included observations: 456

Autocorrelation	Partlal Correlation		AC	PAC	Q-Stat	Prob
	1	1	0.226	0.226	23.518	0.000
41	4 1	2	-0.010	-0.065	23.564	0.000
1 1 1	1 1	3	-0.038	-0.022	24.234	0.000
3 (1	100	4	-0.016	-0.002	24.349	0.000
1)1	l the	5	0.009	0.012	24.388	0.000
1(1	1 1	6	-0.009	-0.016	24.424	0.000

Fitting AR(1) model: we get

 $X_t = 1.06 + 0.227X_{t-1} + \varepsilon_t, \qquad \sigma_{\varepsilon} = 5.4655$

Estimation


MEVIPOR CORECT Print Name Freeze Estimate Forecast Stats Reside

Dependent Variable: SERIES01 Method: Least Squares Date: 02/07/12 Time: 16:32 Sample (adjusted): 2 456

Included observations: 455 after adjustments Convergence achieved after 3 iterations

Variable	Coefficient	8td. Error	t-Statistic	Prob.	
C AR(1)	1.069163 0.227095	0.331516 0.045829	3.225074 4.955257	0.001 4 0.0000	
R-squared Adjusted R-squared 8.E. of regression 8um squared resid Log likelihood F-statistic Prob(F-statistic)	0.051417 0.049323 5.465524 13531.99 -1417.414 24.55457 0.000001	8.D. depende Akaike info cr Schwarz crite Hannan-Quir	dean dependent var B.D. dependent var kalke info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		
Inverted AR Roots	.23				

Residuals Identification

Date: 02/07/12 Time: 16:34

Sample: 2 456

Included observations: 455

Q-statistic probabilities adjusted for 1 ARMA term(s)

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
ılı	1 - 1/1	1	0.015	0.015	0.0980	
af i	18 1	2	-0.055	-0.056	1.5119	0.21
di	n)	3	-0.037	-0.036	2.1501	0.34
di	l di l	4	-0:012	-0.014	2.2169	0.52
rhi	The little	5	0.015	0.011	2.3150	0.67
11	i ifi	6	0.002	-0.001	2.3172	0.80

Fitting AR(2) model: since PACF at lag 2 is rather large, we try also to fit $\overline{AR(2)}$ model:

$$X_t = 1.06 + 0.241 X_{t-1} - 0.064 \varepsilon_t, \qquad \sigma_{\varepsilon} = 5.466.$$

The coefficient -0.064 is not significant. Hence AR(1) is preferable over AR(2).

Variable	Coefficient	Std. Error	t-8tatistic	Prob.
C AR(1) AR(2)	1.063964 0.241579 -0.064260	0.311843 0.047036 0.047121	3.411856 5.136077 -1.363735	0.0007 0.0000 0.1733
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.055353 0.051164 5.466211 13475.64 -1413.851 13.21356 0.000003	Mean depend S.D. depende Akalke info cri Schwarz criter Hannan-Quin Durbin-Watso	nt var terion ilon n criter.	1.062548 5.611654 6.241635 6.268847 6.252356 2.000597
Inverted AR Roots	.1222i	.12+.22i		

Fitting MA(1) model: we get

$$X_t = 1.06 + \varepsilon_t + 0.2390\varepsilon_{t-1}, \qquad \sigma_{\varepsilon} = 5.45$$

Variable	Coefficient	Std. Error	t-Statistic	Prob.	
C MA(1)	1.061394 0.239034	0.316180 3.356929 0.045587 5.243483		0.0009	
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.054539 0.052457 5.451166 13490.71 -1419.332 26.18910 0.000000	Mean dependent var S.D. dependent var Akalke info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		1.059511 5.600024 6.233913 6.251994 6.241035 1.995328	
Inverted MA Roots	24				

Autocorrelation	D	-					
Adiocollelation	Partlai Correlation		AC	PAC	Q-Stat	Prob	
r r	1/1	1	0.001	0.001	0.0008		
1]1	1 1	2	-0.002		0.0020	0.98	
<u>'</u> 9 '	141				0.5830	0.74	
11	- 111					0.88	
31	111				0.7063		
altı	1 1 1	6	-0.005	-0.006	0.7165	0.98	

MA

Estimation

Residual identification

(iii): Models AR(1) and MA(1) seem to fit equally well. We may select $\overline{AR}(1)$ which is more intuitive.

.