Lecture 4

3.7 Finding the best model

One of the most important task in time series analysis is the model selection.
In many cases several models may seem to fit well.

One can select the model according some numerical criteria, i.e. using AC,
PACF or AIC criterions.

In time series: we fit the models selected on the properties of ACF and PACF.
Such selection is somewhat subjective.

George Box: "all models are wrong but some are useful”.

Advise: exercise also your judgement.

Why? because in time series models may be ”useful” and ” adequate”, but
there is anything like a ”correct” model for a given time series.

Models are just approximations to the dynamic systems generating the data.

General observation: if we fit an AR model with a large number of parameter,
we will get a better fit, using more parameter. Drawback:

e information will be dissipated over large number of parameters. So,
they will be poorly estimated.

e Overfitting, will produce poor forecast
e Overfitted models fit ”locally” nearly perfectly , but "globally” perform
poor.

Example: we fit 10-th order polynomial to US population data from 1900
to 2000, and extrapolate to 2010. We get good fit for the data 1900-2000,

~but poor unrealistic prediction for 2010.
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Figure 6.1 The US population according to the census versus time from 1900 to 2000. A
perfect fit to the past data, but a poor and unrealistic forecast for the year 2010. ’



Conclusion: we prefer models with good explanatory power - they are called
parsimonious model. They represent data with then minimum number of

parameter.

3.8 Case analysis: Internet user data, model selection

What is model selection? By model selection fitting ARMA (p,q,) model, we
understand selection of p and g.

Popular criterions for selection for p, q are:
o Akaike’s information criterion (AIC)
e Baysian information criterion BIC.

e These criterions include a penalty for over parameterizing. They try
to select a model with a minimal number of parameters.

We dicuss below how they are used.

Example: Consider the time series of the number X, of internet users logged

on each minute for a period 100 min.
Figure 6.2. shows the plot of the data
Figure 6.3. shows the sample ACF, which is remains large for a large

number of lags.

We conclude: The series appears to be non-stationary. (If a process is sta-
tionary we expect it to have a long term constant mean)
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) Flg.um_ 6.2 Time sen'e; plot of the number, z,, of internet server users over a 100-minute
period.
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Figure 6.3 The sample autocorrelation for the number, z;, of internet server users over a
100-minute period.

How to deal with non-stationarity?: Although the number of users X, isnon-
stationary process, we can expect the first difference wy = Xy — X;_1 in the
numbers of users logged in from minute to minute to be stationary

Such hypothesis is confirmed by the data:

o [igure 6.4 shows the plot of w;. We see that the process of changes
looks rather stationary. '

Figure 6.5a shows sample ACF, and 6.5b sample PACF of the data wy.

¢ ACF shows a damped sin wave. PACF cuts off after lag 3. It suggest
we should fit AR(3) model for wy:

Wy = G1We—1 + -+ - + pawy_3 + €.
This means that the original series we model by ARIMA(3,1,0) model

Xe— Xi1 = 1(Xpm1 — Ximo) + -+ + ¢3( X3 — Xi—a) + 4.

e Both ACF and PACF are like damped sin waves, which is a pattern
of an ARMA(1,1) model. This suggests wé could try also ARMA(1,1)
model: :

Wy = grwe_y + €4 — Beg_y.

39



‘3% i

:p

{

2:»
e il

W=
Sl
.£

-5 4

—10 4

—15 A 3
1 10 20 30 40 50 60 70 80 90 100 :
Time (minutes)
Figure 6.4 Time series plot of the difference w; = Vz, (changes).of the number of

internet server users over a 100-minute period.
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Figure 6.5 (a) The sample ACF and (b) the sample PACF of the differences (changes) of
the number of internet server users over a 100-minute period.

Question: which model to use for w;: AR(3) or ARMA(1,1)? To check
which model suits better, we shall compare the residuals, obtained fitting
these two models.




TABLE 6.1 Estimation Summary for Fitting the ARIMA(3, 1,0) Model to the Internet Server

Data z;
Model term Estimate Standard error 3 p
AR 1: ¢ 1.1632 0.0955 "12.18 0.000
AR 2: ¢ —_10.6751 0.1360 —4.96 0.000
AR 3: ¢3 03512 0.0956 367 0:000
Differencing: 1 regular. - .
Number of observations: Original series 100; after differencing 99.
Residuals: SS = 917.812; MS = 9.561; df = 96.
Modified Box—Pierce (Ljung—Box) Chi—square statistic:
Lag 12 24 36 48
Chi square 1.5 20.2 315 46.5
df 9 21 33 45
p-value 0.587 0.509° 0.539 0411
ACF of residuals for users
(with 5% significance limits for the autocorrelations)
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Figure 6.7 Summary residual check from the ARIMA(3, 1, 0) model.
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1 10 20 30 40 50 60° 70 80 90 100

TABLE 6.2 Estimation Summary for Fitting the A‘RIMA(1,"1, 1) Model to the Internet Server

Data 2[
Model term Estimate Standard error t p
AR 1 : ¢ 0.6573 0.0868 . 7.57 0,.000
MA1:6 —0.5301 0.0974 —5.44 0.000
Differencing: 1 regular.
Number of observations: Omiginal series 100; afier differencing 99
Residuals: §S = 961.617; MS = 9.914; df = 97.
Modified Box—Pierce (Ljung—Box) Chi-square statistic:
Lag 12 24 36 48
Chi square 10.3 263 38.1 54.2
df 10 22 — 34 46
p-value Jo.417 0.237 0.289 0.190
AQF of residuals for users: Model ARIMA (1,1,1)
{with 5% significance limits for the autocorrelations)
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‘PACF of residuals for users: Model ARIMA (1,1, 1)
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Figure 6.8 Sample ACF and sample PACF for residuals from the ARIMAC(L, 1, 1)

model.



Comparison:

e both models AR(3) and AR(1,1) fit well, but AR(3) model has smaller
residuals variance MS=9.56 than that of ARMA(1,1), MS=9.914.

e ARMA(1,1) has two parameters. They are slightly better estimated
than three parameters of AR(3).

Which model to choose? We may go for a model with smaller number of
parameter, i.e. ARMA(1,1).

Next we provide formal criterion to answer this question.
3.9 Model selection criteria

A common tool to model selection is a model fitting criterion.

Some software packages provide automatic model selection for stationary
ARMA (p,q) models based AIC and BIC criterions.

Note: To apply it for non-stationary data, we may need first to difference
the data.

AIC criterion: it is constructed as follows. For different order values (p, g),
it fits ARMA (p,q) model. The it computes the sample variance of residuals

€1, " En,
. . n
A — § ~2
O—S:n . E]
i=1

and the function
2r

AIC = In(62) + —
n

where 7 denotes the number of estimated parameters including the constant
term.

We prefer model with the smallest AIC.
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Rule: to fit ARMA(p,q) model, we select p,q which minimizes AIC.

How AIC works? When we add additional parameters we typically reduce
the variance 62. Then In(6?) becomes smaller. Since AIC includes penalty
% for adding additional parameter, penalty makes AIC larger, and prevents
overfitting.

Note: for AR(p) models, AIC tend to overestiniate p. Therefore, often in-
stead of AIC, BIC criterion is used:

rinn

BIC =1n(6?) + -

It has stronger penalty 2% for the number of parameters. The prefered

n

model is with the smallest BIC.

Table 6.3. contains the values of AIC and BIC criterions fitted to the internet
data.

e We see that AIC would select AR(3) model
e BIC selects ARMA (1,1) model, but difference from AR(3) is very
small.
Conclusion:
e We may prefer ARMA(1,1) model since it has less parameters
e often several model fits to the data equally well

e unnecessary increase of parameters would increase error in forecasting.
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TABI.E/GB The AIQ AICC, and BIC Values fqr,ARlMA(p,],.q), with

p=0/...,5;9=0,...,5 Models Fitted to the Internet Server Data. The Numbers in Bold

Face Indicate the Minimum for Fach of the Information”

Criteria. Note That All of the Above

Models are Fitted Without a Constant Term

.BIC

Model AIC AICC

ARIMA(; 1, 0) 628.995 628.995 628995
ARIMA(I; 1, 0) 527.238 5217.279 529.833
ARIMA(2, 1, 0)° 520.178 520303 525.368
ARIMA(3, 1, 0) 509.994 510.247 517.779
ARIMA(4, 1, 0) 511930~ 512.355 522.310
ARIMA(S, 1, 0) 513.862 514.507 526.837
ARIMA(Q, 1, 1) 547.805 547.847 550.401
ARIMA(, 1, 1) 512.299 512.424 517.490
ARIMA(2, 1, 1) 514.291 514.544 522.077
ARIMA(3, 1, 1) 511.938 512.363 522.318
ARIMA, 1, 1) 510.874 511.520 523.850
ARIMAGS, 1, 1) 515.638 516551 531.209
ARIMA(0, 1, 2) 517.875 518.000 523.065
ARIMA(1, 1, 2) 514.252 514.504 522.037
ARIMA(2, 1, 2) 515.360 515.786 525.741
ARIMAG, 1, 2) 513.917 514.563 526.893
ARIMA(4, 1, 2) 514.179 515.092 529.750
ARIMA(S, 1, 2) 511.543 512.774 529.709
ARIMA(0, 1, 3) 518272 518.524 526.057
ARIMA(, 1, 3) 512.576 513.002 522.957
ARIMA(2, 1, 3) 513773 514.418 526.749
ARIMA(3, 1, 3) 512414 513.327 527.985
ARIMA(4, 1, 3) 517.078 518.308 535.243
ARIMA(S, 1, 3) 513.434 515.034 534,195
ARIMA(0, 1, 4) 517.380 517.805 527.760
ARIMA(1, 1, 4) 513.100 513.745 526.076
ARIMA(2, 1, 4) 511.241 512.154 526.812
ARIMA(3, 1, 4) 512.758 513.989 . 530.924
ARIMA(4, 1, 4) 512.808 514.408 533.569
ARIMA(S, 1, 4) 553.110 555.133 576.466
ARIMA(0, 1, 5) 516.857 517.502 529.833
ARIMA(1, 1, 5) 5142276 515.189 529.847
ARIMA(2, 1, 5) 716.050 717.281 734.216
ARIMA, 1, 5) 516.504 518.104 537.265
ARIMA(4, 1, 5) 515.845 517.867 539.201
ARIMA(S, 1, 5) 512.113 514.613 538.064




Example. Figure 2.8 shows

— the plot of monthly simple returns of the CRSP equal weighter index
1

~ +~ NN
926 to 2003,

— the sample ACF of this series

J

The dashed lines denote the two standard -error limits for ACF.

We see that ACF is significant at lags 1, 3 and 9 (and we observe some

marginal significance at higher lags).

Based on sample ACF, the moving average model is

Tt = Co + € — 01641 — 03643 — Oge;_q.

This methvod.provides information on the nonzero MA lags of the model.

In this case nonzero coefficients are 60,65 and 6q.

Note: the PACF function we used to determine the order of AR(p) model,
does not provide such information.
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Figure 2.8: Time plot and sample autocorrelation function of the monthly simple returns of the CRSP
equal-weighted index from January 1926 to December 2003.



Example. Consider the monthly simple returns of the CRSP equal weighter
index and the specified MA(9) model.

The conditiona] maximum likelihood method produces the fitted model
———lal maximum likelihood

It = 0.013+ ¢, + 0.181e;-1 — 0.121¢,_5 + 0.122¢,;_, O = 0.0724,
where standard errors for the

estimates are 0.003,0.032, 0.
respectively. All Pbarameters are

032 and 0.032,
significant. ’

The exact maximum likelihood method produces the fitted model
==L maximum likelihood

Ty = 0013 + & +_0.183Et_1 - 0.1205t_3 -+ 0.123Et_9, &E = 00724,

where standard errors for the

estimates are 0.003, 0.032, 0.
respectively. All parameters are

032 and 0.032,
significant.

Testing for goodness of fit shows that both models are adequate.
Comparing models,

we observe that difference between two estimation
methods is negligible.



3.10  Mean, variance and auto-covariance of AR (1) time
series

- Exercise. Consider a stationary AR(1) process
Xe=¢Xi 1+ e,

where the process e, is white noise process with zero mean and variance
Ee? =02, and |¢| < 1
Prove the following

(il) VaT‘(Xt) =

(iii) Show that autocovariance function is

_a?_
g2

2
O¢

k B
- . k=0,1,2,- .
e =TT ¢2¢
Show that autocorrelation function
_ 4k _
pk_¢a k—-0,1,2,"‘.

Examples of ACF and sample ACF of AR(1) process:

They show that ACF p; tends to zero fast, and sample ACF gy is close to
the true pg, when lag k are small.

(a) (b)
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Figure 2.3. The autocorrelation function of an AR(1) model: (a) for ¢y = 0.8 and (b) for ¢; = —0.8.
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Figure 2.5: Sample and theoretical autocorrelation function (ACF) for the simulated data

in Figure 2.1. X(—'_“\ $ 7‘(+-1 . 2/4\ ) ¢ = 0.5
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Figure 2.6: Sample and theoretical autocorrelation function (ACF) for the simulated data

in Figure 2.2.
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Figure 2.7: Sample and theoretical autocorrelation function (ACF) for the simulated data

in Figure 2.3.
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in Figure 2.4.
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Solution:
(i) We take expectation of both side of AR(1) equation:
E[Xt] E[¢Xt_1 + Et]
== E[¢Xt_1] + E[Et]
— $E[X,]

Il

since Eleg] = 0. Since for |¢| < 1, X; is a stationary process, then E[X;] =
E[X;-1] = p does not depend on time ¢. Therefore

0
= ¢u, or ”21_——?):0'

(ii) We showed that £X; = 0. So, by definition

Var(X,) = E(X;— E[X)])? = EX} = E(¢X-1+e)’
= E($*XL, +20Xi 16 +67)
= $EXZ, +20E[X, 18] + E[e]].
Since time series X, is stationary, its variance remains constant: Var(Y;) =

EY? = EY?2, = o}. Moreover, future is not correlated with the past, so
E[Xi-1&;] = 0. Thus we obtain

2 2 2 2 2
oy = ¢°oy +0., or oy=

(iii). Since EX; = 0, then for k > 1,
Ye = CO'U(Xt,Xt_]C) = E[(Xt = EXt)<Xt_k = EX,;,k)]
== E[XtXt_k].
Since X; = ¢X;_1 + €, then

v = E[XiXik] = FEl(¢Xe-1+ e¢) Xtk
SB[ X1 Xt—k] + EleeXe—i
SB[ X1 X—k]

hecause white noise g, is uncorrelated with the past and therefore Ele,Y;_y] =
0. Because of stationarity,

Vi = COU(Xt,Xt—k) = E[XtXt—k], Ye-1 = E[Xt—IXt—k]
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and we obtain
Y = ¢Yk_1, forall %k>0.

From here, we deduce that

Yo =0"Ve2=..=¢"y, k>0

By definition p; = 9% /vp. Then

po=1
pr=¢
P2 = ¥
pe = .

Note that differently from autocoavariance Yk, autocorrelation p, does not

depend on the variance of the white noise Et-
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