Lecture 3

3.5 Testing for correlation

Definition 5 We say that a covariance stationary series (X,) is not serially
correlated if and only if p; =0 for all 7 > 0.

Important example of uncorrelated time series, is i.i.d. (independent inden-
tically distributed) series &, iid(0, 02).

Definition A simplest example of stationary sequence is a sequence, ;, of
independent identically distributed variables with zero mean and variance o2,

Notice that by assumption of independence,

- Cov(ey, €5) = E(e1—Fe,)(es—Ee;) = Elees] = Eles) Eles] = 0, if ts

White noise

Another important second-order stationary process is so-called white noise
time series.

Definition 6 A process, €,, is called a white noise if

Ele,] =0,  El[e}] = o?
Elee—) =0 ifj #0.

White noise time series is zero mean, constant variance, and serially uncorrelated.

bl

e "uncorrelated” implies
tion.

‘independent” only if &, has normal distribu-

e We shall use a white noise and an i.i.d. sequences, €;, as the building
blocks to construct new models of dependent (correlated) time series.
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Figure 1.4: Simulated data from a white noise sequence with mean 0 and variance 1.



Testing for correlation.

Why? If time series variables are uncorrelated, then there is no structure in
the data, and we do not fit a time series model. If variable are correlated,
then we can fit a model, and use it for forecasting.

Fact. If X, are i.i.d. (independent identically distributed) variables then the
statistic

t = VNp ~N(O,1);
t = VNp,~N(0,1) for any fixed k> 1
have asymptotical standard normal distribution.

To test the null-hypothesis
Hy : py = 0 against alternative Hy : py #0
we can use the rule similar as in testing for skewness:

Rule: reject Hy at significance level 5% if

lt] > 2 |p1| > 2
, or —.
P /n
The same rule applies for any lag & > 1:

Reject
Hy : pr = 0 against alternative Hy : py # 0

if
2

okl > —.

Note: plotting sample autocorrelation in e-views, it will be give the 95%

confidence band for py:
2 2

Then S et
e if for lag k, sample correlation py is outside the band, then correlation

at lag k is significant: py #

o If py. is inside the band, then correlation at lag k is not significant, that
1s Pr = 0.
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Ljung—Box test for serial correlation. The Ljung-Box statistic can be
used to test for correlation not at one lag, but at few lags simultaneously.
We choose the number m of lags, and test the null hypothesis:

Hy: pp=pp=-=pm=0
against alternative
Hy: p;#0 forsomel<j<m.

Test uses Ljung-Box statistic
P

Q(m) = N(N + 2) N &

k=1
where N is the number of observations, and gy, is the sample ACF at the lag
k. Under H, it will have not-normal distribution.

E-views will give p-value.

We reject hypothesis Hy at significance level 5% if the p-value is less than
0.05.

Note: What m should we use? If we choose m to large, the test will have
low ability to detect that Hy is not true.

e Use: m = +/N where N is the number of observations.

e E-views will call this test @ test and give p— values for allm = 1,2, - -
Take a look at m < /N to see if there is any p value less than 0.05. If
you find such you may reject hypothesis of no serial correlation, i.e. of

~white noise.
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Example of application of ACF

Sample autocorrelations py, o, ... play important role in linear time series
analysis. They can capture the linear dynamic of the data.

Figure 2.1 shows the sample ACF of monthly simple and log-returns of IBM
stock from January 1926 to 1997. We observe that:

e two sample ACF are very close to each other,

e they show that serial correlation of IBM stock returns are very small,
practically zero.

e the ACIK’s are within two standard-error limits, indicating that they
are not significantly different from 0 at 5% level.

Figure 2.2 shows ACF’s of monthly returns of the value-weighted index of US

markets. There are some significant correlations at 5% level for both return
series.

Comment: Testing for zero correlations has been used in practice as a tool
to check the efficient market assumption, which means that series of returns
should be uncorrelated.

However, the way how stock prices are determined and index returns are
calculated might introduce some autocorrelations in observed return series.

In practice, if all sample ACF’s are close to zero, then the series is a white
noise. Based on Figures 2.1 and 2.2, the monthly returns of IBM stock are
close to the white noise, but those of the value-weighted index are not.
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Figure 2.1. Sample autocorrelation functions of .monthly (a) simple returns and (b) log returns of
IBM stock from January 1926 to December 1997. In each plot, the two horizontal lines denote two
standard-error limits of the sample ACF.
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Figure 2.2. Sample autocorrelation functions of monthly (a) simple returns and (b) log returns of the
value-weighted index of U.S. markets from January 1926 to December 1997. In each plot, the two
horizontal lines denote two standard-error limits of the sample ACF.



Autoregréséive AR(p) model

Now we consider what to do when the time series has significant correlations,
that is it is not white noise.

To autocorrelated time series data can be try to fit a linear autoregressive
moving average model AR(p).

Q: Should such model fit to the date? Not necessarily. We will discuss how
to check if the model is fitting well.

If it does not fit well, then we can try to fit MA (moving average) or ARMA
models, we will discuss below.

What is autoregressive model AR(p) of order p?
e In autoregressive model AR(1) of order 1:
Xi=p+ dXi1+ e

In this model {&;} ~ WN(0,c?) is assumed to be a white noise. The
model has 3 parameters: p, ¢ and o?.

e In autoregressive model AR(2) of order 2:
Xi=p+ g1 Xi-1+ poXen + &

We regress X, on the past two values X; ; and X; 5. What remains is
the white noise {g;} ~ WN(0,0?). The model is defined by parameters:
th, $1, ¢ and o

e In autoregressive model AR(p) of order p:
Xe=p+d1 Xi1 + ¢ Xo o+ 0p Xy p+ &

“Here we regress X, on the past p values X;_4, -- -, X;_,: What remains
is the white noise {&,} ~ WN(0,02). ’



3.6 Stationarity of AR(1) model

The AR(1) model is
Xy =p+¢Xi 1 +ey, g~ WN(0,02).
It has a stationary solution if [¢| < 1.
If Figure 3.10 we see four realizations of AR(1) model with p = 0:
e ¢ =0, then X, = ¢; is white noise.

o ¢ = 0.75: series exhibits short sequences of up and down but always
returns back to equilibrium.

e ¢ = 1: is unit root model which is nonstationary

e ¢ > 1.25 is explosive model which is non-stationary
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Figure 3.10 Four realizations of the AR(1) process with ¢ =0,0.75,1 and 1.25.

28



——&—‘.

i ﬂ 5 V 51vahbw\ﬂn/h‘} | /w )

-2 4

g

=

= o

| %—
—_—

34

Figure 2.1: Simulated data of an AR(1) model with ag = 0, a; = 0.5 and ¢2 = 1.
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Figure 2.2: Simulated data of an AR(1) model with % =1 il =0.9 and 02 = 1.
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Figure 2.4: Simulated data of an AR(1) model with )lo == (L %1 =05 and 02 = 1.
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Causal time series: we say that a stationary time series X, is causal, if it
does not depend on future shocks. That is easy to see for AR(1) model:

Xy = ¢Xi1+ ¢
= P(¢Xi_a+e11) + 6y
= ¢2Xt—2 + Pei_1 + €.

We can show continuing as above and replacing X; 5 by X,_3 and so on that
Xe=er+ e+ d*eia+ ez + -

is a linear combination of past shocks. Since |¢| < 1, this series is converging,
and therefore is causal.

Later we compute EX,, Var(X,) and autocorrelation function pj of a sta-
tionary AR(1) model.

Identification of the order

The identification which ARMA model to use often can be determined by
looking at the ACF and PACF (partial autocorrelation function).

Selection of order (p) when we fit AR(p) model. Assume that we want
to fit to the data AR(p) model. Then first we need to select p. For that we
use PACF function.

Note: Partial autocorrelation function PACF is computed at lags k =
1,2,---,. It has nothing to do with correlation (ACF). The only its use
is to determine the order of AR(p) model.

Meaning of PACE: The PACF at lag k is the last regression coefficient qﬁkk
when we fit regression equations for k = 0,1, 2, - -

Xi=p+ X1+ b Xek + €

Assume that data was generated by AR(p) model. When we fit too many
lags, then PACF ¢y, will be approximately 0. The last non-zero PACF will
be at lag ”p” which is the order of AR(p) model.

In other words: PACF cuts off after lag p.
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For example, if we fit an AR(k) model to the data that truly follows AR(2)

model, the PACF coeflicients at lags 3,4,5, ... will be zero.

Since we can compute only sample PACF, we need to check at which lag it

cuts to zero, i.e. becomes not significantly different from zero.

The rule: the same as in testing for correlation at lag k:

e PACF, is significant, if |[PACF}| > 2/v/N, where N is the number of

observations.

o If [PACF,

In this case

2

2
PACF. € |——=, —
N

< 2/\/N, we assume the the PACF is not significant.

] lies in 95% confidence interval for 0.

Example The PACF if Figure 3.6 shows that the first two partial autocor-
relations are significant, since they are outside the 25D confidence band.

This suggest, that we could fit AR(2) model.
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Figure 3.6 The partial autocorrelation function for the furnace data.

AR(2) model. For AR(2) model
Xi=p+ ¢1 X1 + ¢ Xy g + &

T8 ket ARCp)
Moouime—+

@‘HMLZCWQMA‘
PRCR,

to be stationary it is required that coefficients satisfy the the relations:

$2+ 1 <1
o — ¢1 <1

—1< ¢y < 1.
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Example. In Figure 3.6 we see PACF of furnace temperature time series.
In Table 3.1 we have output of estimated coefficients: -
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Figure 3.6  The partial autocorrelation function for the furnace data.
TABLE3.1 Estimated Coefficients for an AR(2) Process
. Coefficient Estimate Standard error t-value p-value
& 0.9824 0.1062 9.25 0.000
& —-0.3722 0.1066 —3.49 0.001
Constant 615.836 0.042 s —
/1 1579.79 0.11 —- —
52 0.1403 — — —
Using them we can write the model:
Xy =061.5.836 4+ 0.9824.X;_; — 0.3722X,_, + ¢, g2 =0,1403.

1. To verify the fit of the model we first check, that it is stationary: from

b2+
b2 — &

= —0.3722 + 0.9824 = 0.61,

—{.3722 — 0.9824 = —1.85,

$o = —0.3722.

So, we conclude that the model is indeed stationary.
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The mean E[X,] of AR(2) model. It is easy to compute the mean as follows:

Assume that X, is stationary. Then EX; = ux for all t. Taking expectation
of AR(2) equation we get

px = EXy = Elp+¢1 X1+ ¢ X0+ €
= p+ ¢ EXi] + B[ X o] + Fey
= p+ drpux +¢2ﬁ#x-

So, px(1—¢1 — ¢2) = p, and

P
1= ¢1— ¢2
So, in our example
fi _ 61.5.836

Hx = 1537.

T 1 _ gy, 1-061
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Residuals. Next we have to check if this model fits to the data ie. if
residuals £; are uncorrelated. We compute residuals:
s

€ = X — /1 - Qsl‘Xt—l - d;BXt—Z

and then compute ACF and PACF functions, see Figure 3.7 and 3.8. They
show that ACF and PACF are not significant at any lag, which means that
residuals £, is a white noise process. Otherwise, significant correlation would .
mean that we are fitting wrong model. Then we could try e.g. AR(3) model
and check if residuals become uncorrelated.
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Figure 3.7 The ACF of the residuals after fitting an AR (2) model to the furnace data.
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Figure 3.8 The PACF of the residuals after fitting an AR (2) model o the furnace data.



Alternative condition for stationarity. In the textbooks, for AR(2) model
Xe=p+ ¢1 X1 + ¢ Xio + &

you will find alternative condition for existence of a stationary solution, which
is equivalent to that we had above. It is as follows.

After rearranging AR(2) equation, we get
Xe = 1 Xeo1 — Xy o= p+e,
Then we write the associate polynomial
1 — ¢1z — ¢a2® =0,
which always has two solutions z; and z,.

Rule: AR(2) model is stationary, if parameters ¢, and ¢, are such that
|z1] > 1 and |za| > 1.

Note: Similar condition for existence of a stationary solution exist also for

AR(p) model, with p > 3. However, verification of this condition is more
complicated than in case of the AR(1) and AR(2) models.

Moving average MA models.

Autoregressive models relate current observation X, to previous observations
Xoo1,oo, X
At—1, 3 LA LD

Another large classes of model we can use to model stationary time series
are MA (moving average) and ARMA models. They are defined as follows.
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Moving average MA (q) model of order "qT.

This model is "averaging” of the present and past noise terms &,:
Xe=pte —big g —Opgpg— o — Oq€i—q-

It is defined by parameters 6,6, - - - ,0, and o2.
Properties: Important properties of MA(q) models are:

e MA(q) process X, is always stationary.
o L[X|] = p.
» The ACF of MA(q) model cuts off (equals to 0) after lag q.

That means that the sample ACF will be significant and plot outside
95% confidence band given by +2/+/N upto and including lag q.

After lag ¢ the sample ACF is expected to be within the confidence
band, i.e. to be insignificant.

This property is used to select order g when fitting MA(q) model.

Selection rule: select g as the largest lag where ACF is significant.
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Notice:

e To select the order of AR(p) model we use sample PACF function.

e To select the order of MA(q) model we use sample ACF.

ARMA (p,q) process.

X, is defined as solution of equations

Xt =n+ ¢1/\,t~1 g mes ¢pXt_p + &y — 0151_1 == g e qut—m

It is defined by parameters ¢y, - - - s Pp; 01,0, -, 0, and o2

e ARMA(p,q) model puts together AR(p) and MA(q) models. We can
use it, when fitting AR(p) or MA(q) models requires large number of
parameters.

Usually, fitting ARMA model, ARMA(1,1), ARMA(1,2), ARMA(2,1)

fit well: we do not need many parameters.

* Notice: ARMA(p,0) = AR(p) model, and ARMA(0,q) = MA(q) model.

The summary of behaviors of ACF and PACF for AR, MA and ARMA
models is given in Table 3.2.

In Figure 3.9 we see simulated examples of ARMA models and their ACF’s
and PACF’s.

e We can see from Figure 3.9, that ACF and PACF are excellent tools
for identifying the order of MA and AR models, respectively.

For ARMA model we do not have such simple rule using ACF and
PACF. Its ACF and PACF do not cut off to zero.

e For ARMA model to select the order p and ¢ we can use information
criterions AIC and BIC.

e Using software packages we can always try to find a model between
AR, MA and ARMA model, which gives uncorrelated residuals.

o We should seek for a model which has smallest number of parameters.




TABLE3.2 Summary of Properlies of Autoregressive (AR), Moving average (MA), and
Mixed Autoregressive moving average (ARMA) processes

AR([’;‘)

MA(q) ARMA(p, q)

Model w, =Pwr—g + ...+
Ppwi—p + a;
Autocorrelation Infinite damped

exponentials and/or

damped sine waves;

Tails off

Partial autocorrelation Finite; cuts off after
function (PACF) p lags

function (ACF)

wr =¢ w1+t
bpwi—p — a1 +
S L

we=a; —61a;1 —
o= 04

Infinite damped
exponentials and/or
damped sine waves;
Tails off

Infinite damped
exponentials and/or
damped sine waves;
Tails off

Finite; cuts off after
q lags

Infinite; damped
exponentials and/or
damped sine waves;
Tails off

Source: Adapted from BJR.
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