ECOM073: Topics in Financial Econometrics

Queen Mary, University London,

Lecturer: Liudas Giraitis, CB301, L.Giraitis@qmul.ac.uk

Exercise 1.

- 1.1. Table B.17 (see excel file) contains the quarterly dollar sales (in \$1000) of Marshall Field &Company for the period 1960 through 1975. Use different aspect ratios to plot this time series and comment on which aspect ration is preferable.
- 1.2. Repeat exercise 1.1 for the outstanding consumer credits data, provided in Table B.9.
- 1.3. Table B.15 (see excel file) contains the quarterly GDP data in UK for the period 1955 through 1969. Plot the GDP data. Plot the $\log(GDP)$ data. Create superimposed time series plots of GDP and $\log(GDP)$ data. Can the two time series be stationary?

Calculate and plot the log rate growth $\log(GDP_t) - \log(GDP_{t-1})$. Can this time series be stationary?

1.4. Compute the impulse response function

$$x_t = 0.6x_{t-1} - 0.2x_{t-2} + \varepsilon_t$$
, for $t = 0, 1, 2, 3, 4, 5,$

when we have a single shock $\varepsilon_0 = 1$ at time 0, whereas $\varepsilon_1 = \varepsilon_2 = \cdots = 0$. Assume also that $x_{-1} = 0$ and $x_{-2} = 0$.

Graph x_t and comment on patterns you observe.

Does the impact of shock on x_t decreases with increase of t? How many lags are needed for the impact of shock to be reduced by 50%?

1.5. Compute the impulse response function

$$x_t = \phi x_{t-1} + \varepsilon_t,$$
 for $t = 0, 1, 2, 3, 4, 5,$

when we have a single shock $\varepsilon_0 = 1$ at time 0, whereas $\varepsilon_1 = \varepsilon_2 = \cdots = 0$. Assume also that $x_{-1} = 0$. Consider the following cases:

- a) Let $\phi = 0.7$. Graph x_t and comment on patterns you observe.
- b) Let $\phi = 1$. Graph x_t and comment on patterns you observe.