Solutions of ECOM073 TEST 2024

Question 1 (33 marks)

(i) Test for absence of correlation using the following Eview output.

Use all available information given in this output.

Justify and explain your answers.

The sample size is N = 400.

Correlogram of R

Date: 06/11/20 Time: 12:56

Sample: 1 400

Included observations: 400

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		٠.	0.071 0.034 0.072 -0.006 0.056	0.070 0.030 0.065 -0.014 0.046	0.4132 2.4559 2.9181 5.0071 5.0211 6.2865 6.3071	0.293 0.404 0.287 0.413 0.392
141	141	8	-0.021	-0.032	6.4796	0.594
1 j i		9	0.033	0.032	6.9152	0.646
1 1		10	0.013	0.008	6.9898	0.726

Solution of question 1.

(i) (Testing for correlation using ACF.) Time series is a white noise if it is serially uncorrelated, that is $\rho_k = 0$ for $k \ge 1$. Hence, to test for white noise, we test the hypotheses

 $H_0: \rho_k = 0$ against alternative $H_1: \rho_k \neq 0$ at each lag k = 1, 2, ... at significance level 5%.

Rule: ACF ρ_k at lag k is significantly different from zero at 5% significance level if $|\hat{\rho}_k| > 2/\sqrt{N}$, where N is the number of observations.

If $|\hat{\rho}_k| \leq 2/\sqrt{N}$, then ACF at lag k is not significantly different from 0.

(ii) **Ljung-Box test**. This test can be also used to test for zero correlation. We select m = 1, 2, ... and test the hypothesis

 $H_0: \rho_1 = \rho_m = 0$ against alternative

 $H_1: \rho_j \neq 0 \text{ for some } j = 1, ..., m.$

We reject the H_0 at 5% significance level, if p- value satisfies p<0.05. If time series is white noise, that we do not reject H_0 for any m=1,2,...

(iii) We have $2/\sqrt{N}=2/\sqrt{400}=0.1$. Since $|\rho_1|=0.023<0.1$, $|\rho_2|=0.032<0.1$, ..., and so on. We find that ρ_k is not significant at any lag $k=1,2,\ldots$ at 5% significance level, because $|\rho_k|\leq 2/\sqrt{N}=2/\sqrt{400}=0.1$. So, this time series is a white noise.

From the correlogram we see that p-values of Ljung Box test satisfy p > 0.05 for all m = 1, ... So H_0 is not rejected at any m and this time series is a white noise.

Question 2 (34 marks)

- (i) Explain what is meant by a "stationary time series".
- (ii) Test for significance of the skewness and excess kurtosis of returns r_t using summary statistics given below. Explain your testing procedures.

What can you say about the distribution of r_t ?

The sample size is N = 400.

Solution of Question 2.

- (i) Time series X_t is a covariance stationary time series if it satisfies three properties:
 - $-EX_t = \mu$ for all t (does not depend on t);
 - $-Var(X_t) = \sigma^2$ for all t (does not depend on t);
- $-Cov(X_t,X_{t-k})=\gamma_k$ covariance function depends only on the lag k and does not depend on t.

In case of a non-stationary time series, one of these properties will be not satisfied, for example the mean EX_t could vary in time.

(ii) Testing whether skewness S(X) = 0 (symmetry of distribution). We test the hypothesis

 H_0 : S(X) = 0 against alternative H_1 : $S(X) \neq 0$.

at 5% significance level.

We construct the test statistics:

$$t = \frac{\hat{S}(X)}{\sqrt{6/N}} = \frac{0.01543}{\sqrt{6/400}} = 0.12599$$

Under the null hypothesis, $t \sim N(0,1)$ is normally distributed.

Rule: we reject H_0 at 5% significance level, if

$$|t| \ge 2.$$

In our case |t| = 0.12599 < 2. Hence, the test shows that there no evidence in the data to reject the null hypothesis of zero skewness S(X) = 0.

Testing whether kurtosis K(x) = 3 (non heavy tails).

Next we test at 5% significance level the hypothesis:

 H_0 : K(X) - 3 = 0 against alternative H_1 : $K(X) \neq 3$.

We use the test statistics:

$$t = \frac{\hat{K}(X) - 3}{\sqrt{24/N}} = \frac{2.775 - 3}{\sqrt{24/400}} = -0.91856.$$

By theory, under null hypothesis, $t \sim N(0, 1)$ is normally distributed. Therefore the testing rule is similar as for testing skewness:

<u>Rule</u>: reject H_0 at 5% significance level, if

$$|t| \geq 2$$
.

In our case |t| = 0.91856 < 2. Hence, the test does not rejects the null hypothesis of zero kurtosis K(X) = 3.

Jargue-Bera test for asymptotic normality. Jargue-Bera test is used to test the hypothesis:

$$H_0$$
: $S(X) = 0$ and $K(X) - 3 = 0$ ("normal distribution")

against alternative

$$H_1$$
: $S(X) \neq 0$ or $K(X) - 3 \neq 0$ ("distribution is not normal").

Normal distribution has S(X) = 0 and K(X) = 3. Thus, in case of normal distribution, test will not reject H_0 .

Test will reject H_0 if either skewness is not 0 or if kurtosis is not 3. That will indicate that distribution is not normal.

Since the p = 0.6527 value of Jargue-Bera test is larger than 0.05 we do not reject the asymptotic normality at significance level 5%.

Question 3 (33 marks)

(i) Using the given Eviews output determine the order of AR(p) and MA(q) model you would fit to the data. Explain your answer.

The sample size is N = 400.

Date: 04/10/20 Time: 09:19 Sample: 1 400 Included observations: 400									
Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob				
		5 -0.365 6 0.323 7 -0.290 8 0.226 9 -0.170	0.010 -0.061 0.005 0.015 0.065 -0.016 -0.080 0.018	419.30 534.03 614.45 668.63 711.29	0.000 0.000 0.000				

Correlogram of Y

Solution of Question 3:

(i) To select the order p for AR(p) model, we use the sample PACF function. We test the hypothesis

 $H_0: \rho_k = 0$ against alternative $H_1: \rho_k \neq 0$ at lags k = 1, 2, ... at significance level 5%, where ρ_k is the PACF function.

PACF $\hat{\rho}_k$ at lag k is significantly different from 0 at 5% significance level, if $|\hat{\rho}_k| > 2/\sqrt{N}$, where N is the number of observations.

If $|\hat{\rho}_k| \leq 2/\sqrt{N}$, then PACF at lag k is not significantly different from 0.

Rule: we select for p the largest lag k at which the PACF is significant.

This rule can be used because PACF of the AR(p) model becomes 0 for k > p.

— To select the order q of MA(q) model, we use the sample ACF function. We test the hypothesis

 $H_0: \rho_k = 0$ against alternative $H_1: \rho_k \neq 0$ at lags k = 1, 2, ... at significance level 5%, where ρ_k is ACF function.

Rule: ACF ρ_k is significant at lag k at 5% significance level, if $|\hat{\rho}_k| > 2/\sqrt{N}$, where N is the number of observations.

If $|\hat{\rho}_k| \leq 2/\sqrt{N}$, then ACF at lag k is not significantly different from 0.

We select for q the largest lag k at which the ACF is significant.

(ii) We have $2/\sqrt{N} = 2/\sqrt{400} = 0.1$. The PACF is significant only at lag 1. Hence we would fit AR(1) model.

The ACF shows significant correlation at the lags 1 to 10. Hence we would fit MA(10) model.

From the two models AR(1) and MA(10) we select a simpler model AR(1) with smaller number of parameters which should to be fitted to the data.

(iii) According to (ii), we can fit AR(1) model

$$X_t = \phi_0 + \phi X_{t-1} + \varepsilon_t$$

where ε_t is white noise.

(iv) This AR(1) model would fit the data if residuals $\hat{\varepsilon}_t = X_t - \widehat{\phi} X_{t-1}$ are uncorrelated. We could use the correlagram of residuals to test whether

residuals are uncorrelated.

Quiz 5: mini problem 1

Question 1.

Suppose $X_1, ..., X_t$ is a sample from a stationary MA(1) time series

$$X_t = 0.2X_{t-1} + \varepsilon_t,$$

where ε_t is an i.i.d. sequence with zero mean and variance 1.

- (a) Find the 1-step ahead forecast $\hat{X}_t(1)$ of X_{t+1} , the forecast error and the variance of the forecast error.
- (b) Find the 2-step ahead forecast $\hat{X}_t(2)$ of X_{t+2} , the forecast error and the variance of the forecast error.
- (c) What can you say about the k-step ahead forecast $\hat{X}_t(1)$ this time series?

Solution. Consider AR(1) time series model

$$X_t = \phi X_{t-1} + \varepsilon_t$$

where $|\phi| < 1$.

(a) We use the following forecasting rules. The k-step ahead forecast is defined by the formula

$$\hat{X}_t(k) = E[X_{t+k}|F_t].$$

We will uses the rules:

$$E[\varepsilon_{t+1}|F_t] = 0, E[\varepsilon_{t+2}|F_t] = 0, E[\varepsilon_{t+3}|F_t] = 0,...$$

 $E[\varepsilon_{t+1}|F_t] = 0$, $E[\varepsilon_{t+2}|F_t] = 0$, $E[\varepsilon_{t+3}|F_t] = 0$,... $E[X_t|F_t] = X_t$, $E[X_{t-1}|F_t] = X_{t-1}$, ... since by time t, we already know

 $X_t, X_{t-1},$

$$E[\varepsilon_t|F_t] = \varepsilon_t, E[\varepsilon_{t-1}|F_t] = \varepsilon_{t-1}, \dots$$

Recall that we use notation

$$[X_{t+k}] = E[X_{t+k}|F_t]$$

To compute $\hat{X}_t(1)$ first we write

$$X_{t+1} = \phi X_t + \varepsilon_t.$$

Then, using forecasting rules we obtain

$$\hat{X}_t(1) = E[X_{t+1}|F_t] = [X_{t+1}] = [\phi X_t + \varepsilon_{t+1}] = \phi[X_t] + [\varepsilon_{t+1}] = \phi X_t$$

since
$$[X_t] = E[X_t|F_t] = X_t$$
 and $[\varepsilon_{t+1}] = E[\varepsilon_{t+1}|F_t] = 0$.

Therefore, the 1-step ahead forecast is $\hat{X}_t(1) = \phi X_t$

For $\phi = 0.2$, we obtain, $\hat{X}_t(1) = 0.2X_t$.

The error of 1-step ahead forecast is

$$e_t(1) = X_{t+1} - \hat{X}_t(1) = (\phi X_t + \varepsilon_{t+1}) - \phi X_t = \varepsilon_{t+1}.$$

The variance of the error is $Var(e_t(1)) = Var(\varepsilon_{t+1}) = \sigma_{\varepsilon}^2 = 1$.

(b) To compute 2-step ahead forecast, write

$$X_{t+2} = \phi X_{t+1} + \varepsilon_{t+2}.$$

Then

$$\hat{X}_{t}(2) = E[X_{t+2}|F_{t}] = [X_{t+2}] = [\phi X_{t+1} + \varepsilon_{t+2}] = \phi[X_{t+1}] + [\varepsilon_{t+2}]$$
$$= \phi X_{t}(1) + 0 = \phi(\phi X_{t}) = \phi^{2} X_{t}.$$

The forecast error:

$$e_t(2) = X_{t+2} - \hat{X}_t(2) = (\phi X_{t+1} + \varepsilon_{t+2}) - \phi X_t(1) = \phi(X_{t+1} - X_t(1)) + \varepsilon_{t+2} = \phi \varepsilon_{t+1} + \varepsilon_{t+2}.$$

The variance of the forecast error

$$Var(e_t(2)) = E(\phi \varepsilon_{t+1} + \varepsilon_{t+2})^2 = E[\phi^2 \varepsilon_{t+1}^2] + E[\varepsilon_{t+2}^2] = \phi^2 \sigma_{\varepsilon}^2 + \sigma_{\varepsilon}^2.$$

We see that

$$Var(e_t(2)) = \phi^2 \sigma_{\varepsilon}^2 + \sigma_{\varepsilon}^2 \ge Var(e_t(1)) = \sigma_{\varepsilon}^2$$

that is the variance of the 2-step ahead forecast error is larger than the variance of the 1-step ahead forecast error.

(c) Because of the mean reversion property, as k increases,

$$X_t(k) \to EX_t$$
.

The average value of our time series is $EX_t = 0$. Therefore,

$$X_t(k) \to 0.$$

Quiz 6: mini problems 1,2,3

Question 1.

Using given plot, comment whether this time series is stationary or non-stationary.

Solution. This time series does not seem to have a constant mean, so it is a non-stationary time series.

Question 2.

Suppose $Y_1,, Y_t$ is a sample from a time series

$$Y_t = Y_{t-1} + x_t, \quad x_t = \phi x_{t-1} + \varepsilon_t$$

where ε_t is an i.i.d. sequence with zero mean and variance 1 and $|\phi| < 1$.

- (a) Find the 1-step ahead forecast $\hat{Y}_t(1)$ of Y_{t+1} , the forecast error and the variance of the forecast error.
- (b) Find the 2-step ahead forecast $\hat{Y}_t(2)$ of Y_{t+2} , the forecast error and the variance of the forecast error.
- (c) Suggest a forecast for Y_{t+20} .

Solution. (a) We have

$$Y_{t+1} = Y_t + X_{t+1}.$$

Note that

$$E[X_{t+1}|F_t] = E[\phi X_t + \varepsilon_{t+1}|F_t] = \phi X_t.$$

Thus

$$\hat{Y}_{t}(1) = E[Y_{t+1}|F_{t}]
= E[Y_{t} + X_{t+1}|F_{t}]
= E[Y_{t}|F_{t}] + E[X_{t+1}|F_{t}]
= Y_{t} + \phi X_{t}.$$

The 1-step ahead forecast errors is

$$e_t(1) = Y_{t+1} - \hat{Y}_t(1)$$

= $Y_t + X_{t+1} - (Y_t + \phi X_t)$
= ε_{t+1} .

The variance of the 1-step ahead forecast errors is

$$Var(e_t(1)) = Var(\varepsilon_{t+1}) = \sigma_{\varepsilon}^2.$$

(b) We have

$$Y_{t+2} = Y_{t+1} + x_{t+2}.$$

Note that

$$E[x_{t+2}|F_t] = E[\phi x_{t+1} + \varepsilon_{t+2}|F_t] = E[\phi x_{t+1}|F_t] + E[\varepsilon_{t+2}|F_t] = \phi E[x_{t+1}|F_t] = \phi^2 x_t.$$

Thus

$$\hat{Y}_{t}(2) = E[Y_{t+2}|F_{t}]
= E[Y_{t+1} + x_{t+2}|F_{t}]
= E[Y_{t+1}|F_{t}] + E[x_{t+2}|F_{t}] = \hat{Y}_{t}(1) + \hat{x}_{t}(2)
= Y_{t} + \phi x_{t} + \phi^{2} x_{t} = Y_{t} + x_{t}(\phi + \phi^{2}) = Y_{t} + (Y_{t} - Y_{t-1})(\phi + \phi^{2})$$

since $x_t = Y_t - Y_{t-1}$.

The 2-step ahead forecast errors is

$$e_t(2) = Y_{t+2} - \hat{Y}_t(2)$$

= $Y_{t+1} + x_{t+2} - (\hat{Y}_t(1) + \hat{x}_t(2))$
= $(Y_{t+1} - \hat{Y}_t(1)) + (x_{t+2} - \hat{x}_t(2)).$

We showed that

$$e_t(1) = Y_{t+1} - \hat{Y}_t(1) = \varepsilon_{t+1}.$$

We have

$$x_{t+2} - \hat{x}_t(2) = X_{t+2} - \phi^2 x_t = \phi x_{t+1} + \varepsilon_{t+2} - \phi^2 x_t = \phi(\phi x_t + \varepsilon_{t+1}) + \varepsilon_{t+2} - \phi^2 x_t = \phi \varepsilon_{t+1} + \varepsilon_{t+2}.$$

Therefore,

$$e_t(2) = \varepsilon_{t+1} + \phi \varepsilon_{t+1} + \varepsilon_{t+2} = \varepsilon_{t+1}(1+\phi) + \varepsilon_{t+2}.$$

The variance of the 2-step ahead forecast errors is

$$Var(e_t(2)) = Var(\varepsilon_{t+1}(1+\phi) + \varepsilon_{t+2}) = Var(\varepsilon_{t+1}(1+\phi)) + Var(\varepsilon_{t+2}) = (1+\phi)^2 \sigma_{\varepsilon}^2 + \sigma_{\varepsilon}^2.$$

(c) Since Y_t is a unit root time series, forecasting Y_{t+20} , 20- step ahead would produce a large forecast error. So, not good forecast can be suggested.

Question 3.

Consider time series

$$Y_t = \mu + Y_{t-1} + \varepsilon_{t-1},$$

where ε_t is a white noise sequence with zero mean and variance 1. Suppose that $Y_0 = 1$.

- Find $E[Y_t]$
- $Var(Y_t)$.

Solution.

(a) We can write write

$$Y_{t} = \mu + Y_{t-1} + \varepsilon_{t} = \mu + (\mu + Y_{t-2} + \varepsilon_{t-1}) + \varepsilon_{t}$$

$$= 2\mu + Y_{t-2} + \varepsilon_{t-1} + \varepsilon_{t}$$

$$= 3\mu + Y_{t-3} + \varepsilon_{t-2} + \varepsilon_{t-1} + \varepsilon_{t}$$

$$= \dots$$

$$= t\mu + Y_{0} + \varepsilon_{t} + \varepsilon_{t-2} + \varepsilon_{t-1} + \varepsilon_{1}$$

$$= t\mu + 1 + \varepsilon_{t} + \varepsilon_{t-2} + \varepsilon_{t-1} + \dots + \varepsilon_{1},$$

since $Y_0 = 1$. Then

$$\begin{split} E[Y_t] &= E[\mu t + 1 + \varepsilon_t + \varepsilon_{t-2} + \dots + \varepsilon_1] \\ &= \mu t + 1 + E[\varepsilon_t] + E[\varepsilon_{t-2}] + \dots + E[\varepsilon_1] \\ &= \mu t + 1 + 0 + 0 + \dots + 0 = \mu t + 1. \end{split}$$

(b)

$$Var(Y_t) = E[(Y_t - E[Y_t])^2] = E[(t\mu + 1 + \varepsilon_t + \varepsilon_{t-1} + \varepsilon_{t-2} + \dots + \varepsilon_1 - \mu t - 1)^2]$$

$$= E[(\varepsilon_t + \varepsilon_{t-1} + \dots + \varepsilon_1)^2]$$

$$= E[\varepsilon_t^2] + E[\varepsilon_{t-1}^2] + \dots + E[\varepsilon_1^2] = \sigma_{\varepsilon}^2 + \sigma_{\varepsilon}^2 + \dots + \sigma_{\varepsilon}^2 = t\sigma_{\varepsilon}^2$$

noting that ε_t is a white noise and therefore

$$\begin{split} E[\varepsilon_i \varepsilon_j] &= 0 \text{ if } i \neq j; \\ E[\varepsilon_i \varepsilon_j] &= \sigma_\varepsilon^2 \text{ if } i = j. \end{split}$$

(c) By definition,

$$Cov(Y_t, Y_s) = E[(Y_t - E[Y_t])(Y_s - E[Y_s])].$$

Let $t \geq s$. Since $E[Y_t] = \mu t + 1$ and

$$Y_t - E[Y_t] = \varepsilon_t + \varepsilon_{t-1} + \varepsilon_{t-2} + \dots + \varepsilon_1,$$

we obtain

$$\begin{array}{lcl} Cov(Y_t,Y_s) & = & E[(\varepsilon_t+\varepsilon_{t-1}+\ldots+\varepsilon_1)(\varepsilon_s+\varepsilon_{s-1}+\ldots+\varepsilon_1)] \\ & = & E[(\{\varepsilon_s+\varepsilon_{t-1}+\ldots+\varepsilon_1\}+\{\varepsilon_{s+1}+\ldots+\varepsilon_t\})(\varepsilon_s+\varepsilon_{s-1}+\ldots+\varepsilon_1)] \\ & = & E[(\varepsilon_s+\varepsilon_{t-1}+\ldots+\varepsilon_1)^2]+E[(\varepsilon_{s+1}+\ldots+\varepsilon_t)(\varepsilon_s+\varepsilon_{s-1}+\ldots+\varepsilon_1)] \\ & = & s\sigma_\varepsilon^2+0=s\sigma_\varepsilon^2. \end{array}$$

Therefore

$$Cov(Y_t, Y_s) = s\sigma_{\varepsilon}^2 = \min(t, s)\sigma_{\varepsilon}^2.$$