Solutions of ECOM073 TEST 2024

Question 1 (33 marks)
(i) Test for absence of correlation using the following Eview output.

Use all available information given in this output.
Justify and explain your answers.
The sample size is $N=400$.

Correlogram of \mathbf{R}

Date: 06/11/20 Time: 12:56
Sample: 1400
Included observations: 400

Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob	
$1 \\|$	1 1	10.032	0.032	0.4132	0.520	
1	1	20.071	0.070	2.4559	0.293	
111	111	30.034	0.030	2.9181	0.404	
1	1	40.072	0.065	5.0071	0.287	
111	111	$5-0.006$	-0.014	5.0211	0.413	
1	1	60.056	0.046	6.2865	0.392	
11	11	70.007	0.001	6.3071	0.504	
111	101	8-0.021	-0.032	6.4796	0.594	
111	111	90.033	0.032	6.9152	0.646	
11	11	100.013	0.008	6.9898	0.726	

Solution of question 1.

(i) (Testing for correlation using ACF.) Time series is a white noise if it is serially uncorrelated, that is $\rho_{k}=0$ for $k \geq 1$. Hence, to test for white noise, we test the hypotheses
$H_{0}: \rho_{k}=0$ against alternative $H_{1}: \rho_{k} \neq 0$
at each lag $k=1,2, \ldots$ at significance level 5%.
Rule: ACF ρ_{k} at lag k is significantly different from zero at 5% significance level if $\left|\hat{\rho}_{k}\right|>2 / \sqrt{N}$, where N is the number of observations.

If $\left|\hat{\rho}_{k}\right| \leq 2 / \sqrt{N}$, then ACF at lag k is not significantly different from 0 .
(ii) Ljung-Box test. This test can be also used to test for zero correlation. We select $m=1,2, \ldots$ and test the hypothesis
$H_{0}: \rho_{1}=\ldots . \rho_{m}=0$ against alternative
$H_{1}: \rho_{j} \neq 0$ for some $j=1, \ldots, m$.
We reject the H_{0} at 5% significance level, if p - value satisfies $p<0.05$. If time series is white noise, that we do not reject H_{0} for any $m=1,2, \ldots$
(iii) We have $2 / \sqrt{N}=2 / \sqrt{400}=0.1$. Since $\left|\rho_{1}\right|=0.023<0.1,\left|\rho_{2}\right|=$ $0.032<0.1, \ldots$, and so on. We find that ρ_{k} is not significant at any lag $k=1,2, \ldots$ at 5% significance level, because $\left|\rho_{k}\right| \leq 2 / \sqrt{N}=2 / \sqrt{400}=0.1$. So, this time series is a white noise.

From the correlogram we see that p-values of Ljung Box test satisfy $p>$ 0.05 for all $m=1, \ldots$ So H_{0} is not rejected at any m and this time series is a white noise.

Question 2 (34 marks)
(i) Explain what is meant by a "stationary time series".
(ii) Test for significance of the skewness and excess kurtosis of returns r_{t} using summary statistics given below. Explain your testing procedures.
What can you say about the distribution of r_{t} ?
The sample size is $N=400$.

Solution of Question 2.

(i) Time series X_{t} is a covariance stationary time series if it satisfies three properties:

- $E X_{t}=\mu$ for all t (does not depend on t);
$-\operatorname{Var}\left(X_{t}\right)=\sigma^{2}$ for all t (does not depend on t);
$-\operatorname{Cov}\left(X_{t}, X_{t-k}\right)=\gamma_{k}$ - covariance function depends only on the lag k and does not depend on t.

In case of a non-stationary time series, one of these properties will be not satisfied, for example the mean $E X_{t}$ could vary in time.
(ii) Testing whether skewness $S(X)=0$ (symmetry of distribution).

We test the hypothesis
$H_{0}: S(X)=0$ against alternative $H_{1}: S(X) \neq 0$.
at 5% significance level.
We construct the test statistics:

$$
t=\frac{\hat{S}(X)}{\sqrt{6 / N}}=\frac{0.01543}{\sqrt{6 / 400}}=0.12599
$$

Under the null hypothesis, $t \sim N(0,1)$ is normally distributed.
Rule: we reject H_{0} at 5% significance level, if

$$
|t| \geq 2
$$

In our case $|t|=0.12599<2$. Hence, the test shows that there no evidence in the data to reject the null hypothesis of zero skewness $S(X)=0$.

Testing whether kurtosis $K(x)=3$ (non heavy tails).
Next we test at 5% significance level the hypothesis:

$$
H_{0}: K(X)-3=0 \text { against alternative } H_{1}: K(X) \neq 3 .
$$

We use the test statistics:

$$
t=\frac{\hat{K}(X)-3}{\sqrt{24 / N}}=\frac{2.775-3}{\sqrt{24 / 400}}=-0.91856
$$

By theory, under null hypothesis, $t \sim N(0,1)$ is normally distributed. Therefore the testing rule is similar as for testing skewness:

Rule: reject H_{0} at 5% significance level, if

$$
|t| \geq 2
$$

In our case $|t|=0.91856<2$. Hence, the test does not rejects the null hypothesis of zero kurtosis $K(X)=3$.
Jargue-Bera test for asymptotic normality. Jargue-Bera test is used to test the hypothesis:
$H_{0}: S(X)=0$ and $K(X)-3=0$ ("normal distribution")
against alternative
$H_{1}: S(X) \neq 0$ or $K(X)-3 \neq 0$ ("distribution is not normal").
Normal distribution has $S(X)=0$ and $K(X)=3$. Thus, in case of normal distribution, test will not reject H_{0}.

Test will reject H_{0} if either skewness is not 0 or if kurtosis is not 3 . That will indicate that distribution is not normal.

Since the $p=0.6527$ value of Jargue-Bera test is larger than 0.05 we do not reject the asymptotic normality at significance level 5%.

Question 3 (33 marks)
(i) Using the given Eviews output determine the order of $\operatorname{AR}(\mathrm{p})$ and MA(q) model you would fit to the data. Explain your answer.

The sample size is $N=400$.

Solution of Question 3:

(i) To select the order p for $\operatorname{AR}(\mathrm{p})$ model, we use the sample PACF function. We test the hypothesis
$H_{0}: \rho_{k}=0$ against alternative $H_{1}: \rho_{k} \neq 0$
at lags $k=1,2, \ldots$ at significance level 5%, where ρ_{k} is the PACF function.
PACF $\hat{\rho}_{k}$ at lag k is significantly different from 0 at 5% significance level, if $\left|\hat{\rho}_{k}\right|>2 / \sqrt{N}$, where N is the number of observations.

If $\left|\hat{\rho}_{k}\right| \leq 2 / \sqrt{N}$, then PACF at lag k is not significantly different from 0 .
Rule: we select for p the largest lag k at which the PACF is significant.
This rule can be used because PACF of the $\operatorname{AR}(\mathrm{p})$ model becomes 0 for $k>p$.

- To select the order q of MA(q) model, we use the sample ACF function. We test the hypothesis
$H_{0}: \rho_{k}=0$ against alternative $H_{1}: \rho_{k} \neq 0$
at lags $k=1,2, \ldots$ at significance level 5%, where ρ_{k} is ACF function.
Rule: ACF ρ_{k} is significant at lag k at 5% significance level, if $\left|\hat{\rho}_{k}\right|>2 / \sqrt{N}$, where N is the number of observations.

If $\left|\hat{\rho}_{k}\right| \leq 2 / \sqrt{N}$, then ACF at lag k is not significantly different from 0 .
We select for q the largest lag k at which the ACF is significant.
(ii) We have $2 / \sqrt{N}=2 / \sqrt{400}=0.1$. The PACF is significant only at lag 1 . Hence we would fit $\operatorname{AR}(1)$ model.

The ACF shows significant correlation at the lags 1 to 10 . Hence we would fit MA(10) model.

From the two models $\mathrm{AR}(1)$ and $\mathrm{MA}(10)$ we select a simpler model $\mathrm{AR}(1)$ with smaller number of parameters which should to be fitted to the data.
(iii) According to (ii), we can fit $\operatorname{AR}(1)$ model

$$
X_{t}=\phi_{0}+\phi X_{t-1}+\varepsilon_{t}
$$

where ε_{t} is white noise.
(iv) This $\mathrm{AR}(1)$ model would fit the data if residuals $\hat{\varepsilon}_{t}=X_{t}-\widehat{\phi} X_{t-1}$ are uncorrelated. We could use the correlogram of residuals to test whether
residuals are uncorrelated.

Quiz 5: mini problem 1

Question 1.

Suppose X_{1}, \ldots, X_{t} is a sample from a stationary MA(1) time series

$$
X_{t}=0.2 X_{t-1}+\varepsilon_{t}
$$

where ε_{t} is an i.i.d. sequence with zero mean and variance 1 .

- (a) Find the 1-step ahead forecast $\hat{X}_{t}(1)$ of X_{t+1}, the forecast error and the variance of the forecast error.
- (b) Find the 2-step ahead forecast $\hat{X}_{t}(2)$ of X_{t+2}, the forecast error and the variance of the forecast error.
- (c) What can you say about the k-step ahead forecast $\hat{X}_{t}(1)$ this time series?

Solution. Consider AR(1) time series model

$$
X_{t}=\phi X_{t-1}+\varepsilon_{t}
$$

where $|\phi|<1$.
(a) We use the following forecasting rules. The k-step ahead forecast is defined by the formula

$$
\hat{X}_{t}(k)=E\left[X_{t+k} \mid F_{t}\right] .
$$

We will uses the rules:
$E\left[\varepsilon_{t+1} \mid F_{t}\right]=0, E\left[\varepsilon_{t+2} \mid F_{t}\right]=0, E\left[\varepsilon_{t+3} \mid F_{t}\right]=0, \ldots$
$E\left[X_{t} \mid F_{t}\right]=X_{t}, E\left[X_{t-1} \mid F_{t}\right]=X_{t-1}, \ldots$ since by time t, we already know X_{t}, X_{t-1}, \ldots

$$
E\left[\varepsilon_{t} \mid F_{t}\right]=\varepsilon_{t}, E\left[\varepsilon_{t-1} \mid F_{t}\right]=\varepsilon_{t-1}, \ldots
$$

Recall that we use notation

$$
\left[X_{t+k}\right]=E\left[X_{t+k} \mid F_{t}\right]
$$

To compute $\hat{X}_{t}(1)$ first we write

$$
X_{t+1}=\phi X_{t}+\varepsilon_{t}
$$

Then, using forecasting rules we obtain

$$
\hat{X}_{t}(1)=E\left[X_{t+1} \mid F_{t}\right]=\left[X_{t+1}\right]=\left[\phi X_{t}+\varepsilon_{t+1}\right]=\phi\left[X_{t}\right]+\left[\varepsilon_{t+1}\right]=\phi X_{t}
$$

since $\left[X_{t}\right]=E\left[X_{t} \mid F_{t}\right]=X_{t}$ and $\left[\varepsilon_{t+1}\right]=E\left[\varepsilon_{t+1} \mid F_{t}\right]=0$.
Therefore, the 1-step ahead forecast is $\hat{X}_{t}(1)=\phi X_{t}$.
For $\phi=0.2$, we obtain, $\hat{X}_{t}(1)=0.2 X_{t}$.
The error of 1-step ahead forecast is

$$
e_{t}(1)=X_{t+1}-\hat{X}_{t}(1)=\left(\phi X_{t}+\varepsilon_{t+1}\right)-\phi X_{t}=\varepsilon_{t+1}
$$

The variance of the error is $\operatorname{Var}\left(e_{t}(1)\right)=\operatorname{Var}\left(\varepsilon_{t+1}\right)=\sigma_{\varepsilon}^{2}=1$.
(b) To compute 2-step ahead forecast, write

$$
X_{t+2}=\phi X_{t+1}+\varepsilon_{t+2}
$$

Then

$$
\begin{aligned}
\hat{X}_{t}(2) & =E\left[X_{t+2} \mid F_{t}\right]=\left[X_{t+2}\right]=\left[\phi X_{t+1}+\varepsilon_{t+2}\right]=\phi\left[X_{t+1}\right]+\left[\varepsilon_{t+2}\right] \\
& =\phi X_{t}(1)+0=\phi\left(\phi X_{t}\right)=\phi^{2} X_{t}
\end{aligned}
$$

The forecast error:

$$
e_{t}(2)=X_{t+2}-\hat{X}_{t}(2)=\left(\phi X_{t+1}+\varepsilon_{t+2}\right)-\phi X_{t}(1)=\phi\left(X_{t+1}-X_{t}(1)\right)+\varepsilon_{t+2}=\phi \varepsilon_{t+1}+\varepsilon_{t+2}
$$

The variance of the forecast error

$$
\operatorname{Var}\left(e_{t}(2)\right)=E\left(\phi \varepsilon_{t+1}+\varepsilon_{t+2}\right)^{2}=E\left[\phi^{2} \varepsilon_{t+1}^{2}\right]+E\left[\varepsilon_{t+2}^{2}\right]=\phi^{2} \sigma_{\varepsilon}^{2}+\sigma_{\varepsilon}^{2}
$$

We see that

$$
\operatorname{Var}\left(e_{t}(2)\right)=\phi^{2} \sigma_{\varepsilon}^{2}+\sigma_{\varepsilon}^{2} \geq \operatorname{Var}\left(e_{t}(1)\right)=\sigma_{\varepsilon}^{2}
$$

that is the variance of the 2-step ahead forecast error is larger than the variance of the 1 -step ahead forecast error.
(c) Because of the mean reversion property, as k increases,

$$
X_{t}(k) \rightarrow E X_{t}
$$

The average value of our time series is $E X_{t}=0$. Therefore,

$$
X_{t}(k) \rightarrow 0
$$

Quiz 6: mini problems 1,2,3

Question 1.

Using given plot, comment whether this time series is stationary or nonstationary.

Solution. This time series does not seem to have a constant mean, so it is a non-stationary time series.

Question 2.

Suppose $Y_{1}, \ldots ., Y_{t}$ is a sample from a time series

$$
Y_{t}=Y_{t-1}+x_{t}, \quad x_{t}=\phi x_{t-1}+\varepsilon_{t}
$$

where ε_{t} is an i.i.d. sequence with zero mean and variance 1 and $|\phi|<1$.

- (a) Find the 1-step ahead forecast $\hat{Y}_{t}(1)$ of Y_{t+1}, the forecast error and the variance of the forecast error.
- (b) Find the 2-step ahead forecast $\hat{Y}_{t}(2)$ of Y_{t+2}, the forecast error and the variance of the forecast error.
- (c) Suggest a forecast for Y_{t+20}.

Solution. (a) We have

$$
Y_{t+1}=Y_{t}+X_{t+1} .
$$

Note that

$$
E\left[X_{t+1} \mid F_{t}\right]=E\left[\phi X_{t}+\varepsilon_{t+1} \mid F_{t}\right]=\phi X_{t}
$$

Thus

$$
\begin{aligned}
\hat{Y}_{t}(1) & =E\left[Y_{t+1} \mid F_{t}\right] \\
& =E\left[Y_{t}+X_{t+1} \mid F_{t}\right] \\
& =E\left[Y_{t} \mid F_{t}\right]+E\left[X_{t+1} \mid F_{t}\right] \\
& =Y_{t}+\phi X_{t}
\end{aligned}
$$

The 1-step ahead forecast errors is

$$
\begin{aligned}
e_{t}(1) & =Y_{t+1}-\hat{Y}_{t}(1) \\
& =Y_{t}+X_{t+1}-\left(Y_{t}+\phi X_{t}\right) \\
& =\varepsilon_{t+1} .
\end{aligned}
$$

The variance of the 1-step ahead forecast errors is

$$
\operatorname{Var}\left(e_{t}(1)\right)=\operatorname{Var}\left(\varepsilon_{t+1}\right)=\sigma_{\varepsilon}^{2}
$$

(b) We have

$$
Y_{t+2}=Y_{t+1}+x_{t+2}
$$

Note that
$E\left[x_{t+2} \mid F_{t}\right]=E\left[\phi x_{t+1}+\varepsilon_{t+2} \mid F_{t}\right]=E\left[\phi x_{t+1} \mid F_{t}\right]+E\left[\varepsilon_{t+2} \mid F_{t}\right]=\phi E\left[x_{t+1} \mid F_{t}\right]=\phi^{2} x_{t}$.
Thus

$$
\begin{aligned}
\hat{Y}_{t}(2) & =E\left[Y_{t+2} \mid F_{t}\right] \\
& =E\left[Y_{t+1}+x_{t+2} \mid F_{t}\right] \\
& =E\left[Y_{t+1} \mid F_{t}\right]+E\left[x_{t+2} \mid F_{t}\right]=\hat{Y}_{t}(1)+\hat{x}_{t}(2) \\
& =Y_{t}+\phi x_{t}+\phi^{2} x_{t}=Y_{t}+x_{t}\left(\phi+\phi^{2}\right)=Y_{t}+\left(Y_{t}-Y_{t-1}\right)\left(\phi+\phi^{2}\right)
\end{aligned}
$$

since $x_{t}=Y_{t}-Y_{t-1}$.

The 2-step ahead forecast errors is

$$
\begin{aligned}
e_{t}(2) & =Y_{t+2}-\hat{Y}_{t}(2) \\
& =Y_{t+1}+x_{t+2}-\left(\hat{Y}_{t}(1)+\hat{x}_{t}(2)\right) \\
& =\left(Y_{t+1}-\hat{Y}_{t}(1)\right)+\left(x_{t+2}-\hat{x}_{t}(2)\right) .
\end{aligned}
$$

We showed that

$$
e_{t}(1)=Y_{t+1}-\hat{Y}_{t}(1)=\varepsilon_{t+1}
$$

We have

$$
\begin{aligned}
x_{t+2}-\hat{x}_{t}(2) & =X_{t+2}-\phi^{2} x_{t}=\phi x_{t+1}+\varepsilon_{t+2}-\phi^{2} x_{t}=\phi\left(\phi x_{t}+\varepsilon_{t+1}\right)+\varepsilon_{t+2}-\phi^{2} x_{t} \\
& =\phi \varepsilon_{t+1}+\varepsilon_{t+2} .
\end{aligned}
$$

Therefore,

$$
e_{t}(2)=\varepsilon_{t+1}+\phi \varepsilon_{t+1}+\varepsilon_{t+2}=\varepsilon_{t+1}(1+\phi)+\varepsilon_{t+2}
$$

The variance of the 2-step ahead forecast errors is
$\operatorname{Var}\left(e_{t}(2)\right)=\operatorname{Var}\left(\varepsilon_{t+1}(1+\phi)+\varepsilon_{t+2}\right)=\operatorname{Var}\left(\varepsilon_{t+1}(1+\phi)\right)+\operatorname{Var}\left(\varepsilon_{t+2}\right)=(1+\phi)^{2} \sigma_{\varepsilon}^{2}+\sigma_{\varepsilon}^{2}$.
(c) Since Y_{t} is a unit root time series, forecasting $Y_{t+20}, 20-$ step ahead would produce a large forecast error. So, not good forecast can be suggested.

Question 3.

Consider time series

$$
Y_{t}=\mu+Y_{t-1}+\varepsilon_{t-1}
$$

where ε_{t} is a white noise sequence with zero mean and variance 1 . Suppose that $Y_{0}=1$.

- Find $E\left[Y_{t}\right]$
- $\operatorname{Var}\left(Y_{t}\right)$.

Solution.

(a) We can write write

$$
\begin{aligned}
Y_{t} & =\mu+Y_{t-1}+\varepsilon_{t}=\mu+\left(\mu+Y_{t-2}+\varepsilon_{t-1}\right)+\varepsilon_{t} \\
& =2 \mu+Y_{t-2}+\varepsilon_{t-1}+\varepsilon_{t} \\
& =3 \mu+Y_{t-3}+\varepsilon_{t-2}+\varepsilon_{t-1}+\varepsilon_{t} \\
& =\ldots \\
& =t \mu+Y_{0}+\varepsilon_{t}+\varepsilon_{t-2}+\varepsilon_{t-1}+\varepsilon_{1} \\
& =t \mu+1+\varepsilon_{t}+\varepsilon_{t-2}+\varepsilon_{t-1}+\ldots+\varepsilon_{1}
\end{aligned}
$$

since $Y_{0}=1$. Then

$$
\begin{aligned}
E\left[Y_{t}\right] & =E\left[\mu t+1+\varepsilon_{t}+\varepsilon_{t-2}+\ldots+\varepsilon_{1}\right] \\
& =\mu t+1+E\left[\varepsilon_{t}\right]+E\left[\varepsilon_{t-2}\right]+\ldots+E\left[\varepsilon_{1}\right] \\
& =\mu t+1+0+0+\ldots+0=\mu t+1
\end{aligned}
$$

(b)

$$
\begin{aligned}
\operatorname{Var}\left(Y_{t}\right) & =E\left[\left(Y_{t}-E\left[Y_{t}\right]\right)^{2}\right]=E\left[\left(t \mu+1+\varepsilon_{t}+\varepsilon_{t-1}+\varepsilon_{t-2}+\ldots+\varepsilon_{1}-\mu t-1\right)^{2}\right] \\
& =E\left[\left(\varepsilon_{t}+\varepsilon_{t-1}+\ldots+\varepsilon_{1}\right)^{2}\right] \\
& =E\left[\varepsilon_{t}^{2}\right]+E\left[\varepsilon_{t-1}^{2}\right]+\ldots+E\left[\varepsilon_{1}^{2}\right]=\sigma_{\varepsilon}^{2}+\sigma_{\varepsilon}^{2}+\ldots+\sigma_{\varepsilon}^{2}=t \sigma_{\varepsilon}^{2}
\end{aligned}
$$

noting that ε_{t} is a white noise and therefore

$$
\begin{aligned}
& E\left[\varepsilon_{i} \varepsilon_{j}\right]=0 \text { if } i \neq j \\
& E\left[\varepsilon_{i} \varepsilon_{j}\right]=\sigma_{\varepsilon}^{2} \text { if } i=j
\end{aligned}
$$

(c) By definition,

$$
\operatorname{Cov}\left(Y_{t}, Y_{s}\right)=E\left[\left(Y_{t}-E\left[Y_{t}\right]\right)\left(Y_{s}-E\left[Y_{s}\right]\right)\right] .
$$

Let $t \geq s$.
Since $E\left[Y_{t}\right]=\mu t+1$ and

$$
Y_{t}-E\left[Y_{t}\right]=\varepsilon_{t}+\varepsilon_{t-1}+\varepsilon_{t-2}+\ldots+\varepsilon_{1}
$$

we obtain

$$
\begin{aligned}
\operatorname{Cov}\left(Y_{t}, Y_{s}\right) & =E\left[\left(\varepsilon_{t}+\varepsilon_{t-1}+\ldots+\varepsilon_{1}\right)\left(\varepsilon_{s}+\varepsilon_{s-1}+\ldots+\varepsilon_{1}\right)\right] \\
& =E\left[\left(\left\{\varepsilon_{s}+\varepsilon_{t-1}+\ldots+\varepsilon_{1}\right\}+\left\{\varepsilon_{s+1}+\ldots+\varepsilon_{t}\right\}\right)\left(\varepsilon_{s}+\varepsilon_{s-1}+\ldots+\varepsilon_{1}\right)\right] \\
& =E\left[\left(\varepsilon_{s}+\varepsilon_{t-1}+\ldots+\varepsilon_{1}\right)^{2}\right]+E\left[\left(\varepsilon_{s+1}+\ldots+\varepsilon_{t}\right)\left(\varepsilon_{s}+\varepsilon_{s-1}+\ldots+\varepsilon_{1}\right)\right] \\
& =s \sigma_{\varepsilon}^{2}+0=s \sigma_{\varepsilon}^{2} .
\end{aligned}
$$

Therefore

$$
\operatorname{Cov}\left(Y_{t}, Y_{s}\right)=s \sigma_{\varepsilon}^{2}=\min (t, s) \sigma_{\varepsilon}^{2}
$$

