#### **ECOM073 Midterm test**

Wednesday, 31 March, 9:00am-10:20am (60 test, 20 min for uploading)

The paper and submission link will be setup in ECOM073 module page inside the Assessments tab on QMPLUS. You can upload the photos /scan of your handwritten work

#### Midterm 2021

Wednesday, 31 March, 9:00-10:20 am

- 1) Basic definitions: stationarity, white noise, i.i.d and others
- 2) Summary statistics: mean, variance, skewness, kurtosis, Jarque Bera test
- 3) Testing for absence of correlation
- 4) AR(p), MA(q) models, selection of order p, q
- 5) Checking the fit of the model
- 6) Forecasting using AR, MA models
- 7) IAC and BIC information criterions

Test covers: Lecture 2-5, Problem Sets 2-5

**Examples for preparation:** 

Problem Set 2: 2.1

Problem Set 3: 3.1, 3.2,

Problem Set 4: 4.3, 4.5

Problem Set 5: 5.2

See below also Problems of Quizzes 2-5

# Mini problems - Quiz 2

Learn, solve, submit, get feedback

**Question 1.** Analyse the rise and drop of the GameStop share price in January – February 2021.

Which strategies were used by stock market players? Were they successful?



https://www.google.com/search?q=gamestop+share+price&oq=gam&aqs=chrome.0.69i59j6 9i57j69i59j0i433j46i131i199i291i433j69i61j69i60l2.5247j0j7&sourceid=chrome&ie=UTF-8

# ${\bf Q}uestion~{\bf 2}.~Define the 1/N~Portfolio strategy.$ Comment on its advantages/disadvantages

Use the note "The magic of equal-weighted portfolios". https://justusjp.medium.com/the-magic-of-equal-weighted-portfolios-dac58e1e1da0

Question 3. The researcher computed summary statistics of the time series X using a sample containing N = 400 observations, see the output below.

- 1. Test whether skewness S(X) equals 0
- 2. Test whether kurtosis K(X) equals 3
- 3. Test whether X has normal distribution



1) How to test Ho: S(x) = 0 against M1: S(x) = 0 2) How to test Ho: IC(x) = 3 against M1: K(x) = 3 3). How to use Jarque-Bera test to test whether distribution is would

# Quiz 3: mini problems 1,2,3

Question 1. a) Suppose that

$$X_t = \varepsilon_t + t, \quad t = 1, 2, \dots$$

where  $\varepsilon_t$  is a white noise sequence with zero mean and variance  $E\varepsilon_t^2 = 1$ . Investigate whether time series  $X_t$  is covariance stationary.

b) Suppose that

$$X_t = t\varepsilon_t, \quad t = 1, 2, \dots$$

where  $\varepsilon_t$  is a white noise sequence with zero mean and variance  $E\varepsilon_t^2 = 1$ . Investigate whether time series  $X_t$  is covariance stationary.

Question 2. Explain why the following sequence

$$\rho_1 = 0.8, \quad \rho_2 = 0.5, \quad \rho_3 = \rho_1 + \rho_2, \quad \rho_4 = \rho_1 + \rho_2 + \rho_3, \dots$$

cannot be the auto-correlation function of a covariance stationary sequence.

A. Note: If  $x_{+}$  covariance stationary, then

i  $Ex_{+} = \mu$  to all fi  $Var(x_{+}) = 0^{2}$  to all fcov  $(x_{+}, x_{+} + \mu) = y_{+}$  does not depend on f.

B. Core lation function  $y_{+} = y_{+}/y_{0}$ has properties:

i  $y_{0} = y_{-}/y_{0}$ i  $y_{0} = y_{-}/y_{0}$ 

· 18K 5 1 for any K.

Question 3 Using the following EVIEWS correlogram of time series  $X_t$ , determine whether  $x_t$  is a white noise time series.

| Correlogram of Y                                         |                      |           |        |        |       | p- welle |
|----------------------------------------------------------|----------------------|-----------|--------|--------|-------|----------|
| Pate: 29/11/20 Tir<br>ample: 1 400<br>ncluded observatio | ne: 10:53<br>ns: 400 | ACF       |        |        | 1     | - Salas  |
| Autocorrelation                                          | Partial Correlation  | AC        | PAC    | Q-Stat | Prob  | te       |
| 111                                                      | T di                 | 1 -0.023  | -0.023 | 0.2196 | 0.639 |          |
| 141                                                      | 101                  | 2 -0.032  | -0.033 | 0.6458 | 0.724 |          |
| 101                                                      | 101                  | 3 -0.036  | -0.037 | 1.1600 | 0.763 |          |
| 101                                                      | IQ I                 | 4 -0.057  | -0.060 | 2.4792 | 0.648 |          |
| 1 [1]                                                    | 1 01                 | 5 0.050   | 0.045  | 3.4877 | 0.625 |          |
| ıQ ı                                                     | <u> </u>             | 6 -0.076  | -0.080 | 5.8704 | 0.438 |          |
| 1 [1]                                                    | 1 01                 | 7 0.067   | 0.063  | 7.7087 | 0.359 |          |
| 111                                                      | 111                  | 8 -0.009  | -0.012 | 7.7392 | 0.459 |          |
| 1 1                                                      | 1 1                  |           |        | 7.7940 |       |          |
| 101                                                      | 101                  | 10 -0.041 |        |        |       |          |

Texting to absence of correlation can be done using two methods:

(1) ACF (2) Lying Box test



## Quiz 4: mini problems 1,2,3

Question 1. Using the following EVIEWS correlogram, determine the order q of an MA(q) model you would fit to the data.

| <br> |     |       |      |     |   |
|------|-----|-------|------|-----|---|
| CAPE | ala | 24 mm | 194  | ~ 4 | V |
| Corr | -10 | 910   | 1111 | U   |   |

Date: 04/10/20 Time: 09:39

Sample: 1 625

Included observations: 625

| Autocorrelation | Partial Correlation |    | AC     | PAC    | Q-Stat | Prob  |
|-----------------|---------------------|----|--------|--------|--------|-------|
|                 |                     | 1  | -0.487 | -0.487 | 149.22 | 0.000 |
| 1 200           | 1 D                 | 2  | 0.289  | 0.067  | 201.67 | 0.000 |
| 1 1             |                     | 3  | 0.012  | 0.232  | 201.77 | 0.000 |
| 101             | ı þ                 | 4  | -0.016 | 0.074  | 201.94 | 0.000 |
| ιþ              | 11                  | 5  | 0.062  | 0.015  | 204.35 | 0.000 |
| 10              | th                  | 6  | -0.013 | 0.000  | 204.47 | 0.000 |
| 1(1             | ığı .               | 7  | -0.019 | -0.051 | 204.70 | 0.000 |
| i þi            | 111                 | 8  | 0.039  | -0.001 | 205.68 | 0.000 |
| 1 1             | ıþ                  | 9  | 0.007  | 0.059  | 205.72 | 0.000 |
| ıdı             | 101                 | 10 | -0.047 | -0.033 | 207.13 | 0.000 |

#### Question 2.

Using AIC information criterion values obtained fitting an AR(p) model, select the order p of an AR model you would fit to the data:

Write down equation of your AR(p) model.



## Question 3.

Consider an MA(1) time series

$$Y_t = \varepsilon_t + 0.5\varepsilon_{t-1},$$

where  $\varepsilon_t$  is a white noise sequence with zero mean and variance 1.

- Find  $E[Y_t]$  and  $Var(Y_t)$ .
- Find the auto-covariance function  $\gamma_1$  and autocorrelation function  $\rho_1$ . What is  $\rho_k$  for  $k \geq 2$ ?

## Quiz 5: mini problems 1, 2, 3

#### Question 1.

Suppose  $X_1, ..., X_t$  is a sample from a stationary MA(1) time series

$$X_t = 0.2X_{t-1} + \varepsilon_t,$$

where  $\varepsilon_t$  is an i.i.d. sequence with zero mean and variance 1.

- (a) Find the 1-step ahead forecast  $\hat{X}_t(1)$  of  $X_{t+1}$ , the forecast error and the variance of the forecast error.
- (b) Find the 2-step ahead forecast  $\hat{X}_t(2)$  of  $X_{t+2}$ , the forecast error and the variance of the forecast error.
- (c) What can you say about the k-step ahead forecast  $\hat{X}_t(1)$  this time series?

#### Question 2.

Suppose  $X_1, ..., X_t$  is a sample from a stationary MA(1) time series

$$X_t = 1 + \varepsilon_t - 0.8\varepsilon_{t-1},$$

where  $\varepsilon_t$  is an i.i.d. sequence with zero mean and variance 1.

- (a) Find the 1-step ahead forecast  $\hat{X}_t(1)$  of  $X_{t+1}$ , the forecast error and the variance of the forecast error.
- (b) Find the 2-step ahead forecast  $\hat{X}_t(2)$  of  $X_{t+2}$ , the forecast error and the variance of the forecast error.
- (c) What can you say about the k-step ahead forecast  $\hat{X}_t(1)$  this time series?

## Question 3.

Consider an AR(1) time series

$$X_t = 1 - 0.4X_{t-1} + \varepsilon_t,$$

where  $\varepsilon_t$  is a white noise sequence with zero mean and variance  $\sigma_{\varepsilon}^2$ .

- Find  $E[X_t]$ .
- Given  $X_t = 5$ , find the 1-step ahead forecast  $\hat{X}_t(1)$  of  $X_{t+1}$