
C++ fundamentals with use cases from finance
Tutorial 3: Counterparty Credit Risk management, Backtesting set up

Ivan Zhdankin

Cuemacro Tutorial 3: Counterparty Credit Risk management, Backtesting set up



Business Context: Counterparty Credit Risk management, Backtesting set
up

Counterparty Credit Risk - risk of the counterparty default and consequent loss in our portfolio

For this tutorial we assume that we have several loans in our portfolio with different counterparties
Loan is represented by:
I Notional
I APR (annual percentage rate)
I Rank - probability of counterparty default (∈ [0, 1])

In case of the counterparty default there is loss in our portfolio - exposure at default (EAD):

EAD = Notional

Thus the Expected Loss is equal to:

EL = Notional ∗ Rank

Which is loss weighted by the probability of loss

Cuemacro Tutorial 3: C++ fundamentals with use cases from finance 2 / 6



Part 1/4
Define a Class Loan
The class should contain private member variables: ID, Notional, APR (annual percentage rate),
rank (probability of the counterpart default)
The class should contain public member functions, use keyword const where possible:
I GetNotional, GetAPR, GetRank, GetID - take no input parameters and return the corresponding values of

the variables
Define operator overloading as a free function to compare two objects of a class Loan (one loan is
smaller than another if it is riskier than another, that is: Notional1 ∗ rank1 > Notional2 ∗ rank2)

Class Loan

Constructor
Member
Variables

Member
functions

Setting initial
values of a
Loan

ID

Notional

APR

Rank

getID

getNotional

getAPR

getRank

Cuemacro Tutorial 3: C++ fundamentals with use cases from finance 3 / 6



Part 2/4

Define operator overloading as a free function to merge two objects of a class Loan into one Loan
object

The merged load should have Notional equal to the sum of the individual Notionals:

Notional = Notional1 + Notional2

The merged loan should have rank and APR which are defined as weighted average of the
individual ranks and APRs:

rank =
Notional1 ∗ rank1 + Notional2 ∗ rank2

Notional1 + Notional2

APR =
Notional1 ∗ APR1 + Notional2 ∗ APR2

Notional1 + Notional2

Cuemacro Tutorial 3: C++ fundamentals with use cases from finance 4 / 6



Part 3/4

Modify the class Loan to be template class that can have different types of the ID (int, double,
string)

Create different instances of the class to validate your code

Create template free function which takes the 4 variables and return the weighted average of them
(this function would help to calculate weighted Rank and APR)

In main function create instance of a class and then define a reference and a pointer to it

Print out on the screen the ID of the object using the reference and using the pointer

Using the keyword this define the member function of the class to return the combined ID: the
function should take only one object of a class and return combined IDs

Let us define a friend function that is able to change the ID of any Loan

Cuemacro Tutorial 3: C++ fundamentals with use cases from finance 5 / 6



Part 4/4

Define a class Backtesting

The class should have private variable name
The class should have public member functions:
I Constructor - takes name of the backtest as input parameter, assign it to the member variable name and

print out on the screen ”test has started”
I Destructor - print out on the screen ”test has finished”
I GetName - takes no parameters and return the name of a backtest

In main function instantiate an object of a class in a separate scope defined by the curve brackets

Instantiate an object of the class and allocate memory on the heap using operator new

Using operator delete remove the created object from the heap

Cuemacro Tutorial 3: C++ fundamentals with use cases from finance 6 / 6


