
C++ fundamentals with use cases from finance
Lecture 4: Creating optimal code and Standard Library

Ivan Zhdankin

Cuemacro Lecture 4: Creating optimal code and Standard Library



References and Inheritance

Class Account

Class Cur-
rent Account

Class Sav-
ing Account

Class Bussi-
ness Account

Imagine we have different type of accounts (derived classes) inherited from the Account (base
class)

The reference can be of base class and can actually refer to the derived class instance

Account & acc = CurrentAccount;

The class CurrentAccount inherits from Account has all the capabilities of Account

Any base class function can be called through a base reference to a derived class instance

Cuemacro Lecture 4: C++ fundamentals with use cases from finance 2 / 15



Virtual Function

However if there are same functions implemented in both a base and a derived classes which
function will be executed?:
I If the function in a base class is marked as virtual - the derived class function will be executed
I This is also known as polymorphism - as a function as several forms
I If the function is NOT virtual - the base class function will be executed

Virtual function - is dynamic polymorphism as which function to call is resolved in runtime (some
times this is called run-time polymorphism)

Virtual has impact on the run-time performance

We can NOT call functions of the derived class by the base class reference which target is derived
class instance:

acc.DerivedClassFunction();

We can NOT create a derived class reference that refers to a base class instance:

CurrentAccount & acc = Account;

Cuemacro Lecture 4: C++ fundamentals with use cases from finance 3 / 15



Pointers and Inheritance

Situation with pointers and inheritance is similar to the reference and inheritance

A pointer to a base class can actually point to a derived class instance:

Account * pt_acc = &CurrentAccount;

Any base class function can be called using the pointer:
I If the function in a base class is marked as virtual - the derived class function will be executed
I If the function is NOT virtual - the base class function will be executed

We can NOT call functions of the derived class by the pointer of base class which target is derived
class instance:

pt_acc->DerivedClassFunction();

We can NOT have pointer of the derived class pointing to the base class instance:

CurrentAccount * pt_acc = Account;

Demo: Indirections and Inheritance

Cuemacro Lecture 4: C++ fundamentals with use cases from finance 4 / 15



Slicing problem

There are many advantages of using the inheritance and virtual functions as they enable to write
generic code

However we need to be careful as there is a slicing problem
If we copy objects around a slicing problem can occur:
I When copying a derived object into a base object extra member variable fall away

For example, same rules applies when passing to a function by value

double report_fees(BankAccount acc)

{return acc.report_fees();}

If function takes as parameter a bank account and we pass by value a saving account - a copy will
be made and slicing will happen - we will have bank account inside the function, not a saving
account

To avoid the slicing we use pointers and references

For that reason we pass by reference into functions

Cuemacro Lecture 4: C++ fundamentals with use cases from finance 5 / 15



Casting

Often when we have polymorphism we have a base class pointer but we know that in reality
points to a derived class instance

For example at some point of the program you know that the pointer points to the business account
class which is derived from the bank account, however the pointer is of bank account class

We would like the base class pointer to be a derived class pointer as this would allow us to access
the derived class methods

For these reasons we have casting in C++

Static Casting
I Static cast < type >

I The static cast happens in compile time

I Use only if the pointer is of derived class

I Does not require virtual functions

I Results in ”Compiler Error” if the casting fails

I Because of there are no any checks the static
casting is faster than the static casting

Dynamic Casting
I Dynamic cast < type >

I Happens in run time

I Because of the run-time checks it is safer

I Works when there is at least one virtual function

I Returns ”null” if the casting fails

I Because of the run-time checks the dynamic
casting is slower but safer then the static casting

Demo: Casting

Cuemacro Lecture 4: C++ fundamentals with use cases from finance 6 / 15



Map

A collection that is organised in pairs

Set of pairs: key-value, where we can lookup a values by the corresponding key

Keys Values

a

b

c

d

1
2

3

4

Figure: Map with < Key,Value > pairs

There are can be one value for each key

It is dynamically adjusted if we need to add/remove a pair

A map keeps the pairs sorted internally to speed searching

To add or access items [] can be used

There are different methods implemented in map to help developers including find()

To use maps we need to #include < map >

Demo: maps

Cuemacro Lecture 4: C++ fundamentals with use cases from finance 7 / 15



Queues
Another fundamental data structure is queue - a container of objects that are inserted and
removed according to first-in-first-out principle (FIFO)

We say that elements are inserted in the rear and removed from the front

To enqueue means inserting an element in the rear; to dequeue means removing an element
from the front

Examples of using queues data structure include:
I Storing orders in LOB (limit order book):

I When a resource is shared among multiple consumers
I When data is transferred asynchronously (data not necessarily received at same rate as sent) between two

processes

Cuemacro Lecture 4: C++ fundamentals with use cases from finance 8 / 15



Collections in Standard Library

So far we have seen different collections in SL including stings, vectors and maps

There are other collections in C++ SL
List: implemented as linked list
I Faster adding the element
I Slower than vector for accessing

However all the collections are similar in use: all of them contain similar methods and iterators
Other examples of collections:
I Queues, dequeue: push and pop from one and both end, FIFO
I Priority queue - has a priority inside a queue
I Set - contains unique element
I Multimap - a map which can have more then one value for one key

Cuemacro Lecture 4: C++ fundamentals with use cases from finance 9 / 15



Sorting and Searching in SL

So far we have done iteration through different elements of the collections

There also sorting and searching algorithms in C++

These functions are implemented as free functions that take a collection as argument rather than
method of the collection class

We use same functions for any collections: vector, map, list

To use the functions in need to include #include < algorithm >

Demo: Algorithms

Cuemacro Lecture 4: C++ fundamentals with use cases from finance 10 / 15



Finding the price given Probability To Trade

In RFQ based protocol dealers produce quotes replying ot the clients requests

The dealers’ pricing logic may be based on the ”willingness” to trade which is measured as
probability to trade

When dealers quote price to the client the following relationship hold between Spread and
Probability To trade:

Binary Search is used to to find a spread and produce the price given probability to trade

Cuemacro Lecture 4: C++ fundamentals with use cases from finance 11 / 15



More on SL

Date and time:
I #include < chrono >
I #include < ctime >

Complex numbers:
I #include < complex >

Matrix math:
I #include < numeric >

Random number generator:
I #include < random >

Math: abs, rounds, sqrt, pow, sin
I #include < cmath >

Cuemacro Lecture 4: C++ fundamentals with use cases from finance 12 / 15



Lambda Functions

Lambda is an expression that represents doing something, performing some operation and
calculation

When using lambdas we handle the function to some other operation or function
Lambda enables:
I generic programming
I functional programming
I readability of the program while eliminating tiny functions

In the tiny function implementation of which can be hidden far away in the code we can use
Lambda function

void print(int i)

{

cout << i << endl;

};

At the same time for each operator will be more readable with lambda function

for_each(v.begin(), v.end(), print);

Lambdas do not just do operations, they can return values like normal functions:
I The compiler can specify the return type of Lambda
I Normally the developer should specify it as with normal functions
I However the syntax for specifying the return type is different

Demo: Lambda

Cuemacro Lecture 4: C++ fundamentals with use cases from finance 13 / 15



Exceptions

Errors and failures happen

Probably the largest part of programming is reacting to the errors and understanding bugs
Some errors are predictable:
I Non-integer entered in the field
I The withdrawal amount is more than available

Some are not:
I Out of memory
I Result too big for the integer
I File is not found
I Access denied
I Division by zero

There should be balance between what should be checked and what is not because the check
slow down your application

When you expect the errors or exceptions happen you can transfer the flow of execution from the
problem location to the place where the problem can be handled

The rule is that to handle the exceptions as close to it is source as possible

Demo: Exceptions

Cuemacro Lecture 4: C++ fundamentals with use cases from finance 14 / 15



Try and Catch rules

Any block of code that might throw an exception should be wrapped by try block

Catch blocks should follow the try block

Try and catch block should be as close to the problem as possible

Do not use try and catch when you do not expect potential issues

Catch more specific exceptions first

Catch exceptions by reference

Cuemacro Lecture 4: C++ fundamentals with use cases from finance 15 / 15


