
C++ fundamentals with use cases from finance
Lecture 3: Defining your own structures in C++

Ivan Zhdankin

Cuemacro Lecture 3: Defining your own structures in C++

Arithmetics
To do calculations in C++ we use arithmetic operators:

+;−;/; ∗

There are some shortcuts of the operators:

+ =;− =; ∗ =;/ =

Increment / Decrement operators:

i ++;++ i; i −−;−− i

The post-increment (i ++) return the old value and then increment i, for example:

int i = 1;

int j = i++;

(Output: j = 1; i = 2)

int i = 1;

int j = ++i;

(Output: j = 2; i = 2)

Module % returns the reminder after dividing a/b in the example: 5 % 3

There is no exponential operator in C++: so we can not do 23

The order of arithmetics matter in similar way as we do math

Demo: Arithmetics

Cuemacro Lecture 3: C++ fundamentals with use cases from finance 3 / 18

Comparisons operators

To compare in C++ we use comparisons operators:

>,<,>=,<=,==, ! =

When we want to combine two conditions we would use:

&&(and), ||(or)

The not operator ! reverse the condition to an opposite

Demo: Comparisons

Cuemacro Lecture 3: C++ fundamentals with use cases from finance 4 / 18

Operator overloading
Operator overloading is one of the central features of C++ which makes C++ different from other
languages

This feature makes C++ to be generic

There are many embedded operator overloading in Standard Library so that we normally do not
notice them

”Firstname”+ ”Lastname”: operator + here is overloaded to be able to sum 2 strings from
Standard Library

We can overload any operators that exist in C++ and adopt them for our needs

Cuemacro Lecture 3: C++ fundamentals with use cases from finance 5 / 18

Writing an Overload

Suppose we are writing a class and we would like to overload the comparison operator < for
different Fruits

There are two different ways we can do this:

Fruit < something

something < Fruit

Fruit < something:
I We can create a member function in the class Fruit :

bool MyClass :: operator < (anotherClass object)

I The left side has to be of Fruit type
I The right side has to be of the type we are comparing against

something < Fruit :
I We can create Free function:

bool operator < (anotherClass object,Fruit apple)

I In this case we might need the free-function to be friendly for the Fruit class
I Friend functions - are those that allows to access the private variables and has to be declared inside a

class to indicate the friendship

Demo: Operator Overloading

Cuemacro Lecture 3: C++ fundamentals with use cases from finance 6 / 18

Templates in C++

To avoid repetitions in the code we write functions in C++

Templates are similar, they are used for generality at even higher level
The idea for templates is that you write a function or a class once and it works for very different
types
I We can write a function that perform max, min or average for various types: numbers, fruits, strings and

students
I We can write collections which store and perform searching for different types (type safe collections). We

can store transactions, bonds, trades or employees in a collection

Templates are often rely on operator overloads

Much of the Standard Library are based on the templates

Templates are resolved at compile-time meaning and there is no run-time checks. This speeds up
running the application at run-time

Cuemacro Lecture 3: C++ fundamentals with use cases from finance 7 / 18

Template Functions and Classes

We can write a template functions identically to the ordinary function

template <class T>

T max(T t1, T t2)

We can also write a template classes

template <class T>

class Latest {

private:

T latest;

};

Demo: Template Function and Classes

Cuemacro Lecture 3: C++ fundamentals with use cases from finance 8 / 18

References vs Pointers

Reference

Alias or another name for already existing
variable

An alias for variable that already exists

Operator &

There can NOT be NULL references

Must be initialized when creating

After initialization, it is impossible the
reference to refer to another object

Pointer

Object that stores the memory address of
another value located in memory

Holds the address of a memory location

Operator ∗
There can be NULL pointers

Possible to initialize at anytime

After initialization, the pointer can point to
another object at any time

Cuemacro Lecture 3: C++ fundamentals with use cases from finance 9 / 18

References and Pointers(ii)

The following is a syntax for the references:

int a = 3;

int& rA = a;

The following is a syntax for the pointers:
I To initialize a pointer we have the following syntax:

int a = 3;
int* pA = &a;

I By applying & operator to the variable a we return the address of its memory location
I To get through the pointer to its target use ∗ operator:

*pA = 4;

I To get through the pointer pointing to the object we can use − > operator:

Customer c2("James", "Bond", 7);

Customer* pC = &c2;

cout << "Customer’s name is " << pC->getName() << endl;

Demo: Pointers and References

Cuemacro Lecture 3: C++ fundamentals with use cases from finance 10 / 18

Const with Indirections
A keyword const indicates to developer and compiler that something can not be changed
I If the variable is const, the value of it can not be changed:

int const ci = 3;

I As a function parameter passed by value meaning that the parameter does not change inside the function

int addtwo(int const i){
int x = i + 2;
return x;}

I A function parameter can be passed by reference meaning that we do not create local copy of the variable
and work directly with the variable:

int addtwo(int & i){
int x = i+2;
return x;}

I More commonly when the function takes a parameter by reference and we know that function should not
change this argument we need to mention this for the compiler by using the keyword const:

int addtwo(int const & i){
int x = i+2;
return x;}

I If we have a member function of the class and we know that the function will not change any of the
member variables goof practise to mention this for the compiler by using the keyword const:

string getname() const{
return "First_name" + "Second_name";}

Remember as a rule of thumb to use a keyword const as much as possible

Cuemacro Lecture 3: C++ fundamentals with use cases from finance 11 / 18

Const with Indirections (ii)

Remember that the references can not be reassigned to other objects

A keyword const with a reference means that we can not change a value for the target

We can declare the pointer to be const

int * const cpI;

This means that we can not change the pointer to point to somewhere else

Another example is when the pointer is changeable but something the pointer points to can be
changed:

int const * cpI;

We can not use the above cpI to change the value of a target

Or we can do both at the same time: we can declare a pointer is const and it points at something
that is const:

int const * const cpI;

We can not change it to point somewhere else or use it to change the value of the target

Demo: Const and Indirections

Cuemacro Lecture 3: C++ fundamentals with use cases from finance 12 / 18

C++ Memory Overview

4 segments of the memory:

I Heap: dynamically allocated variables, objects
I Stack: local variables, objects and functions
I Global: variables outside of stack and heap
I Program Code: compiled program

Cuemacro Lecture 3: C++ fundamentals with use cases from finance 13 / 18

Heap

Sometimes we want the variables to live longer than the scope of the function

We can use Heap for storing such variables

Local variables are often described as being on the stack

There is a heap data structure which is used for the Heap

So we can hear that a memory is allocated on the heap

Local variables are the same as stack variables
To get some memory from the Heap we use new keyword
I The keyword new will allocate a memory and return a pointer to the object we just created
I The construct of the object will be run
I When we are done with the allocated memory we clean the memory by calling the keyword delete
I The memory will be released for other usages and the destructor of the object will be called

Demo: Heap

Cuemacro Lecture 3: C++ fundamentals with use cases from finance 14 / 18

Manual Memory Management

If we created a pointer using new, we have to keep track on it
I If we call new we have to call delete

We need to think of if the copies of the pointer are created and what if we delete the pointer

Or what if someone created a copy and then delete it

We have to take care of memory leaks

Manual memory management is hard and it is easy to make mistakes

Cuemacro Lecture 3: C++ fundamentals with use cases from finance 15 / 18

Standard Library Smart Pointers

In the Standard Library there are smart pointers that handle the dynamic memory management for
us
unique ptr - unique pointer
I We can not make a copy of the unique pointer
I When the object goes out of scope the memory is released

shared ptr - for the cases we would like to copy
I Reference counted - as we make copies of the pointer the total number is updated every time
I When the object goes out of scope the total number counts back down deleting the copies until the

memory is released

weak ptr - lets look at the shared pointer without changing the reference count

Cuemacro Lecture 3: C++ fundamentals with use cases from finance 16 / 18

Interview Questions: Increments, Operator Overloading, Template

What is the difference between: i ++ and ++ i

How can we define comparison between two objects (bonds for example)?

What is template in C++? Code up a function max using Template.

Cuemacro Lecture 3: C++ fundamentals with use cases from finance 17 / 18

Interview Questions: Indirections, Const, Heap

What are the differences between references and pointers?

If a member-function is ”const” what it means?

What is ”Memory Leak” problem?

Cuemacro Lecture 3: C++ fundamentals with use cases from finance 18 / 18

