
C++ fundamentals with use cases from finance
Lecture 2: Object Oriented Programming

Ivan Zhdankin

Cuemacro Lecture 2: Object Oriented Programming

String

One of the key type in C++ is strings - the collections of characters

String can be words, sentences, user passwords and IDs

C++ has a class which implements string

To use stings we should include it:

inc lude <s t r i n g >

We can compare stings, combine them and perform other manipulation

Can search for substring, swap and replace the substrings
The various manipulation include:
I To combine strings: +,+ =
I The member functions: length, substr, find

Let us take a look at demo ”String”

Cuemacro Lecture 2: C++ fundamentals with use cases from finance 3 / 35

Vector
Often we need to work with many similar items (of the same type)
I Transactions in an account
I Students in a class
I Trades in a book

In other words we have a collection of items
We can perform different actions on the items in a collection:
I To sum the items
I To average the items
I To sort the items

The Standard Library provides different collections within it
On of the simplest is a vector:
I Holds a number of items of the same type
I Size does not need to be known in advance
I Easy to access a specific items or all of them

Some operations with a vector:
I push back () to add the item
I Type of the item added must match the type of items in a vector
I To access the items we can use [] or iterators begin() and end()
I Some free functions work with a vector: count() or sort()

To use a vector we need to include it

inc lude <vector>

Let us take a look at demo ”Vector”
Cuemacro Lecture 2: C++ fundamentals with use cases from finance 4 / 35

OOP - Object Oriented Programming
C++ is object oriented programming language
C++ is made up not just of functions but also of Classes and Objects
A class defines the template for objects:
I What the object contains?
I What the object can do with anything it contains

Class Student

Constructor
Member
Variables

Member
functions

Setting initial
values of a
Student

Student ID

Class

First Name

Last Name

Current State

Study

DoAssignment

Sleep

Cuemacro Lecture 2: C++ fundamentals with use cases from finance 5 / 35

Class and design
An object is an instance of a class

Function that are inside a class are called member functions

The functions which are not part of a class (discussed so far) are called free or non-member
functions
When we write a class we tell to the compiler what any objects of the class have or can do
I Example of data: a customer has a name, address, email, phone number
I Example of member functions: we can withdraw or debit the account, we can show the balances and

transactions

Keeping the data and what we can do with it together inside a class makes the code easier to
change and use

Let us design a class of Bank account
Account:
I Contains account’s ID number
I Contains Current balance
I Contains list of transaction objects
I Can withdraw and debit some amount of cash
I Can report the balances and the latest transactions

Transaction:
I Holds the date and time of the transaction
I Holds amount and transaction type
I Can report the amount and transaction type

Member function Deposit:
I Create a transaction object
I Add the object to the vector of a transactions
I Update the balances

Cuemacro Lecture 2: C++ fundamentals with use cases from finance 6 / 35

Design into the code

Generally, member variables are private inside the class

The private members are not accessible outside of the class

This is idea of encapsulation - the idea of bundling of data and what we can do with it within one
unit

Functions, you think are important, are normally public - the functions are services that a class can
offer

Public functions are accessible from outside of a class
There are special member functions called constructors:
I Constructors initialize variables
I Name of the contractors is the same as of a class
I Constructors do not have return type (in particular void)
I Constructors can take parameters

The use case for constructors: you should have the transaction amount at the initialization of the
transaction and should not be able to change it

Let us take a look at demo ”Classes”

Cuemacro Lecture 2: C++ fundamentals with use cases from finance 7 / 35

Files

So far we were using only one file for the source code with extension .cpp
Imagine the big organization with code that has several thousands lines
I Requires compiling it all when making small changes
I Difficult to coordinate the work of the developers
I Difficult to find anything in one single file

In practise the code organised in multiple files to resolve those issues

In case of multiple files one has to compile each of the files in to object file and then link them all
using the linker

If we use the other files in our code we need to explicitly tell the compiler about it

Cuemacro Lecture 2: C++ fundamentals with use cases from finance 8 / 35

Header Files

In previous implementation we had to declare the functions and classes before we can use them

Consider the project that has tens of functions and classes, this may become frustrating

We can put all of the declaration in a separate files and then include the file into the code we would
like to compile

The file is called Header file and has extension .h

The directive to include the file would ne: #include

Everything that starts with # will be included into the code by the preprocessor and after that the
whole file will be compiled

As a result your code would look nicer, be more maintainable and easier to understand

Cuemacro Lecture 2: C++ fundamentals with use cases from finance 9 / 35

Organising the code

Typical approach:
I Have one header file per class to explain and declare what is in the class
I Have one implementation file .cpp per class that implements all the functions of a class

Any code that uses the class should include the header file

We should also include the header file in .cpp file that implements the class

We will have a look at demo ”Classes”

Cuemacro Lecture 2: C++ fundamentals with use cases from finance 10 / 35

Inline Functions

In one file (header file .h) we declare the functions and in another one (implementation file .cpp)
we implement the functions of classes

Some functions in a class are obvious

Often the function work with private variables

For such functions it makes sense to implement them in a header file

These functions are called inline

The advantages of using the inline functions is that it can speed up your application

For example we can make current balance function in Account class to be inline

Cuemacro Lecture 2: C++ fundamentals with use cases from finance 11 / 35

Encapsulation

Encapsulation is about how changeable a class is

By default the member variables should be private

We can add public member functions that work with private variables

In some sense such public functions are gatekeepers

Add as few public functions as possible

As a rule of thumb: the more encapsulated, the better

Cuemacro Lecture 2: C++ fundamentals with use cases from finance 12 / 35

Access specifiers

Any member of a class can have it is own access specifier that defines how the member can be
accessed:

Cuemacro Lecture 2: C++ fundamentals with use cases from finance 13 / 35

Creating Instances of a class

A constructor that takes no arguments is called a default constructor

Declare objects with default constructors the same as built in types:

Account a1;

Declare objects with some parameters using ():

Transaction t1(10, "Deposit");

Do not use = when declaring an object and instantiating it

Cuemacro Lecture 2: C++ fundamentals with use cases from finance 14 / 35

Constructors

The objects are initialized by a special function called constructor

The constructor takes parameters that can be used to initialize the member variables

We also can initialize the member values to a default values

The colon introduces initializers

Do not forget the empty braces in case we use lazy initialization
As a reminder from previous slides:
I Name of the contractors is the same as of a class
I Constructors do not have return type (in particular void)

Demo: ”Constructors”

Cuemacro Lecture 2: C++ fundamentals with use cases from finance 15 / 35

Scope

So far we have seen the object created locally
Each object has a lifetime:
I When the line is reached the constructor is called and memory is allocated
I Normally we say that the object is created on the stack (stack semantics)
I The object is then has a scope - it lasts until the close the brace is encountered
I When the close brace is reached, the memory for the object is freed and the another special functions is

called - a destructor

The resources are acquired when the constructors is called and are released when the destructors
are called

In case we do not specify the destructors - there are default destructors

Demo: ”Scope”

Cuemacro Lecture 2: C++ fundamentals with use cases from finance 16 / 35

Struct

One keyword to define your own type is class

There is another keyword to define types - struct

Historically the keyword was used to define plain data

However the struct can have member functions, constructors and destructors and everything else
that a class has

The only difference is that if we do not specify the access specifiers, by default it is public

However when we need some business logic and some member functions people use classes

Cuemacro Lecture 2: C++ fundamentals with use cases from finance 17 / 35

Namespaces

When you have a lot of code it is impossible to code it without namespaces

They are designed to prevent name collisions

You separate the namespaces using ::

Example std :: string

It enables me to have my own string class which is different from the standard string class

We can code full name of the class we specified however there is a simpler syntax for this

Demo: Namespaces

Cuemacro Lecture 2: C++ fundamentals with use cases from finance 18 / 35

Inheritance

Inheritance is key to OOP design

In C++ we can have Base classes and Derived from them

Derived classes can add or override member variables or functions

As an example we can consider different valuation function:
Class Valuation

Function

Class Fixed
Coupon Bond

Class FX
Forward

Class Call Option

Cuemacro Lecture 2: C++ fundamentals with use cases from finance 19 / 35

Inheritance

We are indicating with colon that we are inheriting from something else:

class Account : public Customer{}

Inside the brackets we declare only what we are adding or overriding from the Base class

If we override we provide a special implementation of something that is in a Base class

In general the implementation of Derived classes is of no difference as compared to Base classes

However the constructors are different: we need to pass some parameters to the base class for
initialization

Account(string first, string last, int ID, string type):

Customer(first, last, ID), acctype(tp){}

Demo: Inheritance

Cuemacro Lecture 2: C++ fundamentals with use cases from finance 20 / 35

Enumerations

Enumerations have keyword enum and give names to a set of constants
For example you can have a function that return a status:
I 1 if approved
I 0 if cancelled
I 2 if pending

It is easy to forget what do these numbers mean

We can give names to the numbers using enumerations

Demo: Enum

Cuemacro Lecture 2: C++ fundamentals with use cases from finance 21 / 35

PreProcessor

Include statements starts with #

This is a command for the another part of the building system, which is called preprocessor
The preprocessor control what is compiled
I Controls that a header s compiled inside the source files
I Controls part of standard library to be compiled

There a special command #pragmaonce used by the preprocessor

If we include several header files, we can redefine some of the classes causing the compiler errors

We do not want the thing to be included multiple times

One of the way to get rid of this problem just to include #pragmeonce in every header filer and
compile will cope with a problem for you

Cuemacro Lecture 2: C++ fundamentals with use cases from finance 22 / 35

Free Functions

So far we have seen different functions: free functions, constructors, member functions

The following function takes the parameter by values

double total_balance(Account a1, Account a2)

It creates its own copy of the variable to work with it inside the function

If something is changed inside the function the variable itself is not changed in this case

If is possible to take a parameter by reference

double total_balance(Account & a1, Account & a2)

If we have a line of the parameter that changes it the function also changes the variable

Demo: Free function

Cuemacro Lecture 2: C++ fundamentals with use cases from finance 23 / 35

Member Functions

We declare the member function in a class, we can also declare it in a header file

If we implement the member function in cpp we use the full name:

Account :: GetName()

We cam implement the function in a header file to make it inline

Member functions should be mark as const unless it is going to change a member variable

const member functions mean that they do not change any variable in a class

This is useful information for both compilers and developers

Demo: Member Function

Cuemacro Lecture 2: C++ fundamentals with use cases from finance 24 / 35

Interview Questions

Describe the concept of encapsulation?

What is inline function?

What is the difference between free and member functions?

What is a class and object?

Cuemacro Lecture 2: C++ fundamentals with use cases from finance 25 / 35

Interview Questions

What are the constructors?

What is the use of Inheritance in OOP?

Can a class inherit from multiple classes in C++?

Cuemacro Lecture 2: C++ fundamentals with use cases from finance 26 / 35

Interview Questions
What is the output of the following program:

#include <iostream>

using namespace std;

class Rect{

int x, y;

public:

void set_values (int,int);

int area (){

return (x * y);

}

};

void Rect::set_values (int a, int b) {

x = a;

y = b;

}

int main (){

Rect recta, rectb;

recta.set_values (5, 6);

rectb.set_values (7, 6);

cout << "recta area: " << recta.area();

cout << "rectb area: " << rectb.area();

return 0;

}

Cuemacro Lecture 2: C++ fundamentals with use cases from finance 27 / 35

Interview Questions

What is the output of the following program:

#include<iostream>

using namespace std;

class BaseClass1 {

public:

Base1()

{ cout << " BaseClass1 constructor" << endl; }

};

class BaseClass2 {

public:

Base2()

{ cout << "BaseClass2 constructor" << endl; }

};

class DerivedClass: public BaseClass1 , public BaseClass2 {

public:

Derived()

{ cout << "DerivedClass constructor" << endl; }

};

int main()

{

Derived d;

return 0; }

Cuemacro Lecture 2: C++ fundamentals with use cases from finance 28 / 35

Closed Form Pricing

Various methods can be applied to price instruments:
I Monte-Carlo Simulation: suitable for exotic payoffs
I Closed form: suitable for simple payoffs

Closed form pricers are pricers that produce price from a function that implements a certain
formula for pricing

For scalability we can create class ”ValuationFunction” which serves as a template for all of the
pricing functions

Cuemacro Lecture 2: C++ fundamentals with use cases from finance 29 / 35

Implementing Bond Valuation Function
The bond can be defined by the following attributes that can be taken into constructor:
I Identifier
I Nominal
I Yield
I FaceValue
I Coupon Rate (Fixed)
I Coupon Frequency
I TTM

Dirty Price includes accrued interest rate:

Pdirty =
i=9

∑
i=0

e−yield∗TimeToCoupon[i] ∗ coupon ∗ faceValue

+e−yield∗TimeToCoupon[10] ∗ (1 + coupon) ∗ faceValue

accruedInterest = timeToNextCoupon ∗ coupon ∗ faceValue
Clean Price does not include accrued interest rate

Pclean = Pdirty − accruedInterest

Cuemacro Lecture 2: C++ fundamentals with use cases from finance 30 / 35

Implementing Bond Valuation Function

Bond Valuation class structure

Cuemacro Lecture 2: C++ fundamentals with use cases from finance 31 / 35

Implementing FX Forward Valuation Function
The bond can be defined by the following attributes that can be taken into constructor:
I Identifier
I Nominal
I SpotFXrate
I ratedomestic
I rateforeign
I Strike (ForwardFXrate at time zero)
I TTM

FXForward Valuation is implemented in ValueInstrument method

The relationship between SpotFXrate and ForwardFXrate at the start of FX forward is:

ForwardFXrate0 = SpotFXrate0 ∗ e(ratedomestic−rateforeign)TTMfactor

That is the price of FX forward at time t is given by [John C. Hull ”Options, Futures and Other
Derivatives” for reference]:

SpotFXrate ∗ e−ratedomestic TTMfactor − Strike ∗ e−rateforeignTTMfactor

Cuemacro Lecture 2: C++ fundamentals with use cases from finance 32 / 35

Implementing FX Forward Valuation Function

FX Forward Valuation class structure

Cuemacro Lecture 2: C++ fundamentals with use cases from finance 33 / 35

Implementing Call Option Valuation Function

The Call Option can be defined by the following attributes that can be taken into constructor:
I Identifier
I Nominal (N)
I SpotPrice (S)
I interestRate (r)
I dividendRate (d)
I impliedVol (σ)
I Strike (K)
I TTM (t)

Call Option Valuation is implemented in ValueInstrument method

The option price is derived from Black-Scholes model as follows:

Pcall−option = N(Se−dt N(d1)− Ke−rt N(d2))

Where
I N(x) = 1√

2π

∫ x
−∞ e−

1
2 z2

dz

I d1 = 1
σ
√

t

[
ln
(S

K

)
+ t
(

r + σ2
2

)]
I d2 = 1

σ
√

t

[
ln
(S

K

)
+ t
(

r − σ2
2

)]

Cuemacro Lecture 2: C++ fundamentals with use cases from finance 34 / 35

Implementing Call Option Valuation Function

Call Option Valuation class structure

Cuemacro Lecture 2: C++ fundamentals with use cases from finance 35 / 35

