Primes
 -•กी -•กी

Definition: Suppose $n \in \mathbb{N}$.

Primes

Definition: Suppose $n \in \mathbb{N}$.
n is prime if $n>1$ and the only factors of n are 1 and n.

Primes

Definition: Suppose $n \in \mathbb{N}$.
n is prime if $n>1$ and the only factors of n are 1 and n. n is composite if $n>1$ and n is not prime.

Primes

Definition: Suppose $n \in \mathbb{N}$. n is prime if $n>1$ and the only factors of n are 1 and n. n is composite if $n>1$ and n is not prime.
(1 is neither prime nor composite.)

Primes

Definition: Suppose $n \in \mathbb{N}$.
n is prime if $n>1$ and the only factors of n are 1 and n. n is composite if $n>1$ and n is not prime.
(1 is neither prime nor composite.)

The primes are

$$
2,3,5,7,11,13,17,19,23, \ldots
$$

Prime factors

Lemma 4.3: If $n>1$, then n has at least one prime factor.

Prime factors

Lemma 4.3: If $n>1$, then n has at least one prime factor.

Idea of proof: Use strong induction.

Prime factors

Lemma 4.3: If $n>1$, then n has at least one prime factor.

Idea of proof: Use strong induction.

Inductive step:

Prime factors

Lemma 4.3: If $n>1$, then n has at least one prime factor.

Idea of proof: Use strong induction.

Inductive step:
If n is prime, then n is a prime factor of n.

Prime factors

Lemma 4.3: If $n>1$, then n has at least one prime factor.

Idea of proof: Use strong induction.

Inductive step:
If n is prime, then n is a prime factor of n. \checkmark

Prime factors

Lemma 4.3: If $n>1$, then n has at least one prime factor.

Idea of proof: Use strong induction.

Inductive step:
If n is prime, then n is a prime factor of n. \checkmark

If n is not prime, then n has a factor b, where $1<b<n$.

Prime factors

Lemma 4.3: If $n>1$, then n has at least one prime factor.

Idea of proof: Use strong induction.

Inductive step:

If n is prime, then n is a prime factor of n. \checkmark

If n is not prime, then n has a factor b, where $1<b<n$. By the inductive hypothesis b has a prime factor p.

Prime factors

Lemma 4.3: If $n>1$, then n has at least one prime factor.

Idea of proof: Use strong induction.

Inductive step:

If n is prime, then n is a prime factor of n. \checkmark

If n is not prime, then n has a factor b, where $1<b<n$. By the inductive hypothesis b has a prime factor p.

Now $p \mid b$ and $b \mid n$, so $p \mid n$.

Prime factors

Lemma 4.3: If $n>1$, then n has at least one prime factor.

Idea of proof: Use strong induction.

Inductive step:

If n is prime, then n is a prime factor of n. \checkmark

If n is not prime, then n has a factor b, where $1<b<n$. By the inductive hypothesis b has a prime factor p.

Now $p \mid b$ and $b \mid n$, so $p \mid n$. So p is a prime factor of n.

Prime factors

Lemma 4.3: If $n>1$, then n has at least one prime factor.

Idea of proof: Use strong induction.

Inductive step:

If n is prime, then n is a prime factor of n. \checkmark

If n is not prime, then n has a factor b, where $1<b<n$. By the inductive hypothesis b has a prime factor p.

Now $p \mid b$ and $b \mid n$, so $p \mid n$. So p is a prime factor of n.

Prime factorisation

Prime factorisation

In fact n can be written as a product of primes. This is called the prime factorisation of n.

Prime factorisation

In fact n can be written as a product of primes. This is called the prime factorisation of n.

$$
240=
$$

Prime factorisation

In fact n can be written as a product of primes. This is called the prime factorisation of n.

$$
240=2
$$

Prime factorisation

In fact n can be written as a product of primes. This is called the prime factorisation of n.

$$
240=2 \times 2
$$

Prime factorisation

In fact n can be written as a product of primes. This is called the prime factorisation of n.

$$
240=2 \times 2 \times 2
$$

Prime factorisation

In fact n can be written as a product of primes. This is called the prime factorisation of n.

$$
240=2 \times 2 \times 2 \times 2
$$

Prime factorisation

In fact n can be written as a product of primes. This is called the prime factorisation of n.

$$
240=2 \times 2 \times 2 \times 2 \times 3
$$

Prime factorisation

In fact n can be written as a product of primes. This is called the prime factorisation of n.

$$
240=2 \times 2 \times 2 \times 2 \times 3 \times 5 .
$$

Prime factorisation

In fact n can be written as a product of primes. This is called the prime factorisation of n.

$$
240=2 \times 2 \times 2 \times 2 \times 3 \times 5 .
$$

Fundamental Theorem of Arithmetic: The prime factorisation is unique up to re-ordering.

A famous proof

Theorem 4.4: There are infinitely many primes.

A famous proof

Theorem 4.4: There are infinitely many primes.

Idea of proof:

A famous proof

Theorem 4.4: There are infinitely many primes.

Idea of proof: by contradiction.

A famous proof

Theorem 4.4: There are infinitely many primes.

Idea of proof: by contradiction. Suppose there are finitely many primes

$$
p_{1}, p_{2}, \ldots, p_{m}
$$

A famous proof

Theorem 4.4: There are infinitely many primes.

Idea of proof: by contradiction. Suppose there are finitely many primes

$$
p_{1}, p_{2}, \ldots, p_{m}
$$

and let $n=p_{1} p_{2} \ldots p_{m}+1$.

A famous proof

Theorem 4.4: There are infinitely many primes.

Idea of proof: by contradiction. Suppose there are finitely many primes

$$
p_{1}, p_{2}, \ldots, p_{m}
$$

and let $n=p_{1} p_{2} \ldots p_{m}+1$. Then n has a prime factor, which must be p_{k} for some k.

A famous proof

Theorem 4.4: There are infinitely many primes.

Idea of proof: by contradiction. Suppose there are finitely many primes

$$
p_{1}, p_{2}, \ldots, p_{m}
$$

and let $n=p_{1} p_{2} \ldots p_{m}+1$. Then n has a prime factor, which must be p_{k} for some k.
But now $p_{k} \mid n$ and $p_{k} \mid n-1$, which is a contradiction.

Greatest common divisors

Greatest common divisors

Take $a, b \in \mathbb{N}$.

Greatest common divisors

Take $a, b \in \mathbb{N}$. The greatest common divisor of a and b is the largest integer d such that $d \mid a$ and $d \mid b$.

Greatest common divisors

Take $a, b \in \mathbb{N}$. The greatest common divisor of a and b is the largest integer d such that $d \mid a$ and $d \mid b$. Write this as $\operatorname{gcd}(a, b)$.

Greatest common divisors

Take $a, b \in \mathbb{N}$. The greatest common divisor of a and b is the largest integer d such that $d \mid a$ and $d \mid b$. Write this as $\operatorname{gcd}(a, b)$. a and b are coprime if $\operatorname{gcd}(a, b)=1$.

Greatest common divisors

Take $a, b \in \mathbb{N}$. The greatest common divisor of a and b is the largest integer d such that $d \mid a$ and $d \mid b$. Write this as $\operatorname{gcd}(a, b)$. a and b are coprime if $\operatorname{gcd}(a, b)=1$.

Examples

Greatest common divisors

Take $a, b \in \mathbb{N}$. The greatest common divisor of a and b is the largest integer d such that $d \mid a$ and $d \mid b$. Write this as $\operatorname{gcd}(a, b)$. a and b are coprime if $\operatorname{gcd}(a, b)=1$.

Examples

- $\operatorname{gcd}(9,15)=$

Greatest common divisors

Take $a, b \in \mathbb{N}$. The greatest common divisor of a and b is the largest integer d such that $d \mid a$ and $d \mid b$. Write this as $\operatorname{gcd}(a, b)$. a and b are coprime if $\operatorname{gcd}(a, b)=1$.

Examples

$-\operatorname{gcd}(9,15)=3$.

Greatest common divisors

Take $a, b \in \mathbb{N}$. The greatest common divisor of a and b is the largest integer d such that $d \mid a$ and $d \mid b$. Write this as $\operatorname{gcd}(a, b)$. a and b are coprime if $\operatorname{gcd}(a, b)=1$.

Examples

$-\operatorname{gcd}(9,15)=3$.

- $\operatorname{gcd}(55,65)=$

Greatest common divisors

Take $a, b \in \mathbb{N}$. The greatest common divisor of a and b is the largest integer d such that $d \mid a$ and $d \mid b$. Write this as $\operatorname{gcd}(a, b)$. a and b are coprime if $\operatorname{gcd}(a, b)=1$.

Examples

- $\operatorname{gcd}(9,15)=3$.
- $\operatorname{gcd}(55,65)=5$.

Greatest common divisors

Take $a, b \in \mathbb{N}$. The greatest common divisor of a and b is the largest integer d such that $d \mid$ and $d \mid b$. Write this as $\operatorname{gcd}(a, b)$. a and b are coprime if $\operatorname{gcd}(a, b)=1$.

Examples

- $\operatorname{gcd}(9,15)=3$.
- $\operatorname{gcd}(55,65)=5$.
- $\operatorname{gcd}(100,1005)=$

Greatest common divisors

Take $a, b \in \mathbb{N}$. The greatest common divisor of a and b is the largest integer d such that $d \mid$ and $d \mid b$. Write this as $\operatorname{gcd}(a, b)$. a and b are coprime if $\operatorname{gcd}(a, b)=1$.

Examples

- $\operatorname{gcd}(9,15)=3$.
- $\operatorname{gcd}(55,65)=5$.
- $\operatorname{gcd}(100,1005)=5$.

Greatest common divisors

Take $a, b \in \mathbb{N}$. The greatest common divisor of a and b is the largest integer d such that $d \mid a$ and $d \mid b$. Write this as $\operatorname{gcd}(a, b)$. a and b are coprime if $\operatorname{gcd}(a, b)=1$.

Examples

- $\operatorname{gcd}(9,15)=3$.
- $\operatorname{gcd}(55,65)=5$.
- $\operatorname{gcd}(100,1005)=5$.
- $\operatorname{gcd}(9457,9458)=$

Greatest common divisors

Take $a, b \in \mathbb{N}$. The greatest common divisor of a and b is the largest integer d such that $d \mid a$ and $d \mid b$. Write this as $\operatorname{gcd}(a, b)$. a and b are coprime if $\operatorname{gcd}(a, b)=1$.

Examples

- $\operatorname{gcd}(9,15)=3$.
- $\operatorname{gcd}(55,65)=5$.
- $\operatorname{gcd}(100,1005)=5$.
- $\operatorname{gcd}(9457,9458)=1$.

Greatest common divisors

Take $a, b \in \mathbb{N}$. The greatest common divisor of a and b is the largest integer d such that $d \mid a$ and $d \mid b$. Write this as $\operatorname{gcd}(a, b)$. a and b are coprime if $\operatorname{gcd}(a, b)=1$.

Examples

- $\operatorname{gcd}(9,15)=3$.
- $\operatorname{gcd}(55,65)=5$.
- $\operatorname{gcd}(100,1005)=5$.
- $\operatorname{gcd}(9457,9458)=1$.
- If a and b are primes and $a \neq b$, then $\operatorname{gcd}(a, b)=1$.

Greatest common divisors

Take $a, b \in \mathbb{N}$. The greatest common divisor of a and b is the largest integer d such that $d \mid$ and $d \mid b$. Write this as $\operatorname{gcd}(a, b)$. a and b are coprime if $\operatorname{gcd}(a, b)=1$.

Examples

- $\operatorname{gcd}(9,15)=3$.
- $\operatorname{gcd}(55,65)=5$.
- $\operatorname{gcd}(100,1005)=5$.
- $\operatorname{gcd}(9457,9458)=1$.
- If a and b are primes and $a \neq b$, then $\operatorname{gcd}(a, b)=1$.
$-\operatorname{gcd}(a, 1)=1$ for any a.

Greatest common divisors

Take $a, b \in \mathbb{N}$. The greatest common divisor of a and b is the largest integer d such that $d \mid$ and $d \mid b$. Write this as $\operatorname{gcd}(a, b)$. a and b are coprime if $\operatorname{gcd}(a, b)=1$.

Examples

- $\operatorname{gcd}(9,15)=3$.
- $\operatorname{gcd}(55,65)=5$.
- $\operatorname{gcd}(100,1005)=5$.
- $\operatorname{gcd}(9457,9458)=1$.
- If a and b are primes and $a \neq b$, then $\operatorname{gcd}(a, b)=1$.
- $\operatorname{gcd}(a, 1)=1$ for any a.
- $\operatorname{gcd}(a, a)=a$ for any a.

Greatest common divisors

Take $a, b \in \mathbb{N}$. The greatest common divisor of a and b is the largest integer d such that $d \mid$ and $d \mid b$. Write this as $\operatorname{gcd}(a, b)$. a and b are coprime if $\operatorname{gcd}(a, b)=1$.

Examples

- $\operatorname{gcd}(9,15)=3$.
- $\operatorname{gcd}(55,65)=5$.
- $\operatorname{gcd}(100,1005)=5$.
- $\operatorname{gcd}(9457,9458)=1$.
- If a and b are primes and $a \neq b$, then $\operatorname{gcd}(a, b)=1$.
- $\operatorname{gcd}(a, 1)=1$ for any a.
- $\operatorname{gcd}(a, a)=a$ for any a.
- If $b \mid a$, then $\operatorname{gcd}(a, b)=b$.

Finding $\operatorname{gcd}(a, b)$

Finding gcd (a, b) - slow method

Finding gcd (a, b) - slow method

Write down all the divisors of a and b, and find the highest number in both lists.

Finding gcd (a, b) - slow method

Write down all the divisors of a and b, and find the highest number in both lists.

$$
a=72, b=27 .
$$

Finding gcd (a, b) - slow method

Write down all the divisors of a and b, and find the highest number in both lists.
$a=72, b=27$.
Divisors of 72:

$$
1,2,3,4,6,8,9,12,18,24,36,72 .
$$

Finding gcd (a, b) - slow method

Write down all the divisors of a and b, and find the highest number in both lists.
$a=72, b=27$.
Divisors of 72:

$$
1,2,3,4,6,8,9,12,18,24,36,72 .
$$

Divisors of 27:

$$
1,3,9,27 .
$$

Finding gcd (a, b) - slow method

Write down all the divisors of a and b, and find the highest number in both lists.
$a=72, b=27$.
Divisors of 72:

$$
1,2,3,4,6,8,9,12,18,24,36,72 .
$$

Divisors of 27:

$$
1,3,9,27 .
$$

The highest number in both lists is 9 .

Finding gcd (a, b) - slow method

Write down all the divisors of a and b, and find the highest number in both lists.
$a=72, b=27$.
Divisors of 72:

$$
1,2,3,4,6,8,9,12,18,24,36,72 .
$$

Divisors of 27:

$$
1,3,9,27 .
$$

The highest number in both lists is 9 .
So $\operatorname{gcd}(72,27)=9$.

Finding gcd (a, b) - slow method

Write down all the divisors of a and b, and find the highest number in both lists.
$a=72, b=27$.
Divisors of 72:

$$
1,2,3,4,6,8,9,12,18,24,36,72 .
$$

Divisors of 27:

$$
1,3,9,27 .
$$

The highest number in both lists is 9 .
So $\operatorname{gcd}(72,27)=9$.
This method is very slow.

Finding $\operatorname{gcd}(a, b)$

Finding gcd (a, b) - better method

Finding gcd (a, b) - better method

If we write the prime factorisation of n, then every divisor arises by taking the product of some of the primes appearing.

Finding gcd (a, b) - better method

If we write the prime factorisation of n, then every divisor arises by taking the product of some of the primes appearing.

$$
100=2 \times 2 \times 5 \times 5 .
$$

Finding gcd (a, b) - better method

If we write the prime factorisation of n, then every divisor arises by taking the product of some of the primes appearing.

$$
100=2 \times 2 \times 5 \times 5
$$

Factors are

$$
1,2,5,2 \times 2,2 \times 5,5 \times 5,2 \times 2 \times 5,2 \times 5 \times 5,2 \times 2 \times 5 \times 5 .
$$

Finding gcd (a, b) - better method

If we write the prime factorisation of n, then every divisor arises by taking the product of some of the primes appearing.

$$
100=2 \times 2 \times 5 \times 5
$$

Factors are

$$
1,2,5,2 \times 2,2 \times 5,5 \times 5,2 \times 2 \times 5,2 \times 5 \times 5,2 \times 2 \times 5 \times 5 .
$$

empty product =1

Finding gcd (a, b) - better method

If we write the prime factorisation of n, then every divisor arises by taking the product of some of the primes appearing.

$$
100=2 \times 2 \times 5 \times 5
$$

Factors are

$$
1,2,5,2 \times 2,2 \times 5,5 \times 5,2 \times 2 \times 5,2 \times 5 \times 5,2 \times 2 \times 5 \times 5 .
$$

So to find $\operatorname{gcd}(a, b)$, write down the prime factorisations of a and b, and take the product of the primes appearing in both products.

Finding gcd (a, b) - better method

If we write the prime factorisation of n, then every divisor arises by taking the product of some of the primes appearing.

$$
100=2 \times 2 \times 5 \times 5
$$

Factors are

$$
1,2,5,2 \times 2,2 \times 5,5 \times 5,2 \times 2 \times 5,2 \times 5 \times 5,2 \times 2 \times 5 \times 5 .
$$

So to find $\operatorname{gcd}(a, b)$, write down the prime factorisations of a and b, and take the product of the primes appearing in both products.

$$
120=2 \times 2 \times 2 \times 3 \times 5
$$

Finding gcd (a, b) - better method

If we write the prime factorisation of n, then every divisor arises by taking the product of some of the primes appearing.

$$
100=2 \times 2 \times 5 \times 5
$$

Factors are

$$
1,2,5,2 \times 2,2 \times 5,5 \times 5,2 \times 2 \times 5,2 \times 5 \times 5,2 \times 2 \times 5 \times 5 .
$$

So to find $\operatorname{gcd}(a, b)$, write down the prime factorisations of a and b, and take the product of the primes appearing in both products.

$$
120=2 \times 2 \times 2 \times 3 \times 5
$$

So

$$
\operatorname{gcd}(100,120)=2 \times 2 \times 5=20 .
$$

Finding $\operatorname{gcd}(a, b)$

Finding gcd (a, b) - fast method

Finding gcd (a, b) - fast method
Lemma 4.5 ("dividing with remainder"): If $a, b \in \mathbb{N}$, then there are integers q, r such that $0 \leqslant r<b$ and $a=q b+r$.

Finding gcd (a, b) - fast method

Lemma 4.5 ("dividing with remainder"): If $a, b \in \mathbb{N}$, then there are integers q, r such that $0 \leqslant r<b$ and $a=q b+r$.

Proposition 4.6: If $a, b \in \mathbb{N}$ and $q, r \in \mathbb{Z}$ with $0<r<b$ and $a=q b+r$, then $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, r)$.

