
Primes

Definition: Suppose n ∈ N.
n is prime if n > 1 and the only factors of n are 1 and n.
n is composite if n > 1 and n is not prime.

(1 is neither prime nor composite.)

The primes are
2, 3, 5, 7, 11, 13, 17, 19, 23, . . .
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Prime factors

Lemma 4.3: If n > 1, then n has at least one prime factor.

Idea of proof: Use strong induction.

Inductive step:
If n is prime, then n is a prime factor of n. ✓

If n is not prime, then n has a factor b, where 1 < b < n. By the inductive
hypothesis b has a prime factor p.

Now p | b and b | n, so p | n. So p is a prime factor of n. ✓
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Prime factorisation

In fact n can be written as a product of primes. This is called the prime
factorisation of n.

240 = 2 × 2 × 2 × 2 × 3 × 5.

Fundamental Theorem of Arithmetic: The prime factorisation is unique up to
re-ordering.
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A famous proof

Theorem 4.4: There are infinitely many primes.

Idea of proof: by contradiction. Suppose there are finitely many primes

p1, p2, . . . , pm

and let n = p1p2 . . . pm + 1. Then n has a prime factor, which must be pk for
some k .
But now pk | n and pk | n − 1, which is a contradiction.
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Greatest common divisors

Take a, b ∈ N. The greatest common divisor of a and b is the largest integer d
such that d | a and d | b. Write this as gcd (a, b).
a and b are coprime if gcd (a, b) = 1.

Examples

▶ gcd (9, 15) = 3.

▶ gcd (55, 65) = 5.

▶ gcd (100, 1005) = 5.

▶ gcd (9457, 9458) = 1.

▶ If a and b are primes and a ̸= b,
then gcd (a, b) = 1.

▶ gcd (a, 1) = 1 for any a.

▶ gcd (a, a) = a for any a.

▶ If b | a, then gcd (a, b) = b.
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Finding gcd (a, b)

Write down all the divisors of a and b, and find the highest number in both lists.

a = 72, b = 27.
Divisors of 72:

1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 36, 72.

Divisors of 27:
1, 3, 9, 27.

The highest number in both lists is 9.
So gcd (72, 27) = 9.

This method is very slow.
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Finding gcd (a, b)

If we write the prime factorisation of n, then every divisor arises by taking the
product of some of the primes appearing.

100 = 2 × 2 × 5 × 5.

Factors are

1, 2, 5, 2 × 2, 2 × 5, 5 × 5, 2 × 2 × 5, 2 × 5 × 5, 2 × 2 × 5 × 5.

empty product = 1

So to find gcd (a, b), write down the prime factorisations of a and b, and take
the product of the primes appearing in both products.

120 = 2 × 2 × 2 × 3 × 5

So
gcd (100, 120) = 2 × 2 × 5 = 20.
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So to find gcd (a, b), write down the prime factorisations of a and b, and take
the product of the primes appearing in both products.
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gcd (100, 120) = 2 × 2 × 5 = 20.
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Finding gcd (a, b)

Lemma 4.5 (“dividing with remainder”): If a, b ∈ N, then there are integers
q, r such that 0 ⩽ r < b and a = qb + r .

Proposition 4.6: If a, b ∈ N and q, r ∈ Z with 0 < r < b and a = qb + r , then
gcd (a, b) = gcd (b, r).
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