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The primes are
2,3,5,7,11,13,17,19,23, ...
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Prime factorisation

In fact n can be written as a product of primes. This is called the prime
factorisation of n.
240 =2 x2x2x2x3x5.

Fundamental Theorem of Arithmetic: The prime factorisation is unique up to
re-ordering.



A famous proof



A famous proof

Theorem 4.4: There are infinitely many primes.



A famous proof

Theorem 4.4: There are infinitely many primes.

Idea of proof:



A famous proof

Theorem 4.4: There are infinitely many primes.

Idea of proof: by contradiction.



A famous proof

Theorem 4.4: There are infinitely many primes.

Idea of proof: by contradiction. Suppose there are finitely many primes



A famous proof

Theorem 4.4: There are infinitely many primes.

Idea of proof: by contradiction. Suppose there are finitely many primes

andletn=pipo...pm+ 1.



A famous proof

Theorem 4.4: There are infinitely many primes.

Idea of proof: by contradiction. Suppose there are finitely many primes

andlet n= pip-...pm+ 1. Then n has a prime factor, which must be py for
some k.



A famous proof

Theorem 4.4: There are infinitely many primes.

Idea of proof: by contradiction. Suppose there are finitely many primes

andlet n= pip-...pm+ 1. Then n has a prime factor, which must be py for
some K.
But now pi | nand px | n — 1, which is a contradiction.
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Take a, b € N. The greatest common divisor of a and b is the largest integer d
such that d | aand d | b. Write this as gcd (a, b).
aand b are coprime if gcd (a, b) = 1.

» gcd(a, a) = aforany a.
» Ifb| a, thenged(a, b) = b.
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Finding gcd (a, b) — slow method

Write down all the divisors of a and b, and find the highest number in both lists.

a=72,b=27.
Divisors of 72:
1,2,3,4,6,8,9,12,18, 24,36, 72.

Divisors of 27:
1,3,9,27.

The highest number in both lists is 9.
So gcd (72,27) = 9.

This method is very slow.
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If we write the prime factorisation of n, then every divisor arises by taking the
product of some of the primes appearing.

100=2x2 x5 x5.

Factors are
1, 2,5, 2x%x2,2x5, 65x5,2x2x%x5 2x5x5, 2x2x5x5.

So to find gcd (a, b), write down the prime factorisations of a and b, and take
the product of the primes appearing in both products.

120=2x2x2x3x5

So
ged (100,120) = 2 x 2 x 5 = 20.
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Finding gcd (a, b) — fast method

Lemma 4.5 (“dividing with remainder”): If a, b € N, then there are integers
g,rsuchthat0O < r<banda=qb+r.

Proposition 4.6: If a,be Nand q,r € Zwith0 <r < band a= gb+ r, then
gcd(a, b) = ged (b, r).



