
Natural numbers

Positive integers are also called natural numbers. We write N for the set of
natural numbers.

1 2 3 4 5

N has useful features:

▶ + and × work in N, and satisfy familiar rules.

▶ An ordering 1 < 2 < 3 < . . . that satisfies familiar rules.

But subtraction doesn’t always work in N: there is no natural number 1 − 3.

We introduce the integers to get round this.
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Natural numbers

Let Z denote the set of all integers.

−2 −1 0 1 2 3

Z has useful features:

▶ +, × and − work in Z, and satisfy familiar rules.

▶ The ordering < can be extended to Z, and still satisfies familiar rules.
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Divisibility

Definition: Suppose d , n ∈ N. We say d divides n if there is k ∈ N such that
dk = n.

We write d | n to mean “d divides n”. Do not confuse d | n with d/n!

Alternative phrasing:

▶ d is a divisor of n
▶ d is a factor of n

▶ n is divisible by d

▶ n is a multiple of d .

Examples:
▶ 3 | 12
▶ 12 ∤ 3
▶ 4 | 52

▶ 10 ∤ 52
▶ 1 | n for every n
▶ n | n for every n
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e.g. the divisors of 24 are
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Lemma 4.1: Suppose a, b, c ∈ N. If a | b and b | c then a | c.
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