Natural numbers

Natural numbers

Positive integers are also called natural numbers.

Natural numbers

Positive integers are also called natural numbers. We write \mathbb{N} for the set of natural numbers.

Natural numbers

Positive integers are also called natural numbers. We write \mathbb{N} for the set of natural numbers.

Natural numbers

Positive integers are also called natural numbers. We write \mathbb{N} for the set of natural numbers.

\mathbb{N} has useful features:

Natural numbers

Positive integers are also called natural numbers. We write \mathbb{N} for the set of natural numbers.

\mathbb{N} has useful features:

- + and \times work in \mathbb{N}, and satisfy familiar rules.

Natural numbers

Positive integers are also called natural numbers. We write \mathbb{N} for the set of natural numbers.

\mathbb{N} has useful features:

- + and \times work in \mathbb{N}, and satisfy familiar rules.
- An ordering $1<2<3<\ldots$ that satisfies familiar rules.

Natural numbers

Positive integers are also called natural numbers. We write \mathbb{N} for the set of natural numbers.

\mathbb{N} has useful features:

- + and \times work in \mathbb{N}, and satisfy familiar rules.
- An ordering $1<2<3<\ldots$ that satisfies familiar rules.

But subtraction doesn't always work in \mathbb{N} : there is no natural number $1-3$.

Natural numbers

Positive integers are also called natural numbers. We write \mathbb{N} for the set of natural numbers.

\mathbb{N} has useful features:

- + and \times work in \mathbb{N}, and satisfy familiar rules.
- An ordering $1<2<3<\ldots$ that satisfies familiar rules.

But subtraction doesn't always work in \mathbb{N} : there is no natural number $1-3$.
We introduce the integers to get round this.

Natural numbers

Natural numbers

Let \mathbb{Z} denote the set of all integers.

Natural numbers

Let \mathbb{Z} denote the set of all integers.

Natural numbers

Let \mathbb{Z} denote the set of all integers.

\mathbb{Z} has useful features:

Natural numbers

Let \mathbb{Z} denote the set of all integers.

\mathbb{Z} has useful features:

- +, \times and - work in \mathbb{Z}, and satisfy familiar rules.

Natural numbers

Let \mathbb{Z} denote the set of all integers.

\mathbb{Z} has useful features:

- +, \times and - work in \mathbb{Z}, and satisfy familiar rules.
- The ordering $<$ can be extended to \mathbb{Z}, and still satisfies familiar rules.

Divisibility

Divisibility

Definition: Suppose $d, n \in \mathbb{N}$.

Divisibility

Definition: Suppose $d, n \in \mathbb{N}$. We say d divides n if there is $k \in \mathbb{N}$ such that $d k=n$.

Divisibility

Definition: Suppose $d, n \in \mathbb{N}$. We say d divides n if there is $k \in \mathbb{N}$ such that $d k=n$.

We write $d \mid n$ to mean "d divides n ".

Divisibility

Definition: Suppose $d, n \in \mathbb{N}$. We say d divides n if there is $k \in \mathbb{N}$ such that $d k=n$.

We write $d \mid n$ to mean " divides n ". Do not confuse $d \mid n$ with d / n !

Divisibility

Definition: Suppose $d, n \in \mathbb{N}$. We say d divides n if there is $k \in \mathbb{N}$ such that $d k=n$.

We write $d \mid n$ to mean " divides n ". Do not confuse $d \mid n$ with d / n ! Alternative phrasing:

Divisibility

Definition: Suppose $d, n \in \mathbb{N}$. We say d divides n if there is $k \in \mathbb{N}$ such that $d k=n$.

We write $d \mid n$ to mean " divides n ". Do not confuse $d \mid n$ with d / n ! Alternative phrasing:

- d is a divisor of n

Divisibility

Definition: Suppose $d, n \in \mathbb{N}$. We say d divides n if there is $k \in \mathbb{N}$ such that $d k=n$.

We write $d \mid n$ to mean "d divides n ". Do not confuse $d \mid n$ with d / n ! Alternative phrasing:

- d is a divisor of n
- d is a factor of n

Divisibility

Definition: Suppose $d, n \in \mathbb{N}$. We say d divides n if there is $k \in \mathbb{N}$ such that $d k=n$.

We write $d \mid n$ to mean "d divides n ". Do not confuse $d \mid n$ with d / n ! Alternative phrasing:

- d is a divisor of n
- n is divisible by d
- d is a factor of n

Divisibility

Definition: Suppose $d, n \in \mathbb{N}$. We say d divides n if there is $k \in \mathbb{N}$ such that $d k=n$.

We write $d \mid n$ to mean "d divides n ". Do not confuse $d \mid n$ with d / n ! Alternative phrasing:

- d is a divisor of n
- d is a factor of n
- n is divisible by d
- n is a multiple of d.

Divisibility

Definition: Suppose $d, n \in \mathbb{N}$. We say d divides n if there is $k \in \mathbb{N}$ such that $d k=n$.

We write $d \mid n$ to mean "d divides n ". Do not confuse $d \mid n$ with d / n ! Alternative phrasing:

- d is a divisor of n
- d is a factor of n
- n is divisible by d
- n is a multiple of d.

Examples:

Divisibility

Definition: Suppose $d, n \in \mathbb{N}$. We say d divides n if there is $k \in \mathbb{N}$ such that $d k=n$.

We write $d \mid n$ to mean "d divides n ". Do not confuse $d \mid n$ with d / n !
Alternative phrasing:

- d is a divisor of n
- d is a factor of n
- n is divisible by d
- n is a multiple of d.

Examples:

- $3 \mid 12$

Divisibility

Definition: Suppose $d, n \in \mathbb{N}$. We say d divides n if there is $k \in \mathbb{N}$ such that $d k=n$.

We write $d \mid n$ to mean "d divides n ". Do not confuse $d \mid n$ with d / n !
Alternative phrasing:

- d is a divisor of n
- d is a factor of n
- n is divisible by d
- n is a multiple of d.

Examples:

- $3 \mid 12$
- $12 \nmid 3$

Divisibility

Definition: Suppose $d, n \in \mathbb{N}$. We say d divides n if there is $k \in \mathbb{N}$ such that $d k=n$.

We write $d \mid n$ to mean "d divides n ". Do not confuse $d \mid n$ with d / n !
Alternative phrasing:

- d is a divisor of n
- d is a factor of n
- n is divisible by d
- n is a multiple of d.

Examples:

- $3 \mid 12$
- $12 \nmid 3$
- $4 \mid 52$

Divisibility

Definition: Suppose $d, n \in \mathbb{N}$. We say d divides n if there is $k \in \mathbb{N}$ such that $d k=n$.

We write $d \mid n$ to mean "d divides n ". Do not confuse $d \mid n$ with d / n !
Alternative phrasing:

- d is a divisor of n
- d is a factor of n
- n is divisible by d
- n is a multiple of d.

Examples:

- $3 \mid 12$
- $12 \nmid 3$
- $4 \mid 52$
- $10 \nmid 52$

Divisibility

Definition: Suppose $d, n \in \mathbb{N}$. We say d divides n if there is $k \in \mathbb{N}$ such that $d k=n$.

We write $d \mid n$ to mean "d divides n ". Do not confuse $d \mid n$ with d / n !
Alternative phrasing:

- d is a divisor of n
- d is a factor of n
- n is divisible by d
- n is a multiple of d.

Examples:

- $3 \mid 12$
- $12 \nmid 3$
- $4 \mid 52$
- $10 \nmid 52$
- 1 | n for every n

Divisibility

Definition: Suppose $d, n \in \mathbb{N}$. We say d divides n if there is $k \in \mathbb{N}$ such that $d k=n$.

We write $d \mid n$ to mean "d divides n ". Do not confuse $d \mid n$ with d / n !
Alternative phrasing:

- d is a divisor of n
- d is a factor of n
- n is divisible by d
- n is a multiple of d.

Examples:

- $3 \mid 12$
- $12 \nmid 3$
- $4 \mid 52$
- $10 \nmid 52$
- $1 \mid n$ for every n
- $n \mid n$ for every n

Divisibility

Divisibility

e.g. the divisors of 24 are

Divisibility

e.g. the divisors of 24 are
$1,2,3,4,6,8,12,24$.

Divisibility

e.g. the divisors of 24 are

$$
1,2,3,4,6,8,12,24
$$

Lemma 4.1: Suppose $a, b, c \in \mathbb{N}$. If $a \mid b$ and $b \mid c$ then $a \mid c$.

