
Proofs

In maths, we need to prove our results with absolute certainty.

A proof is a logical explanation of why a result is true.

Proofs are hard!

But we’ll look at proof structure and some standard techniques.
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Structure of a proof

Theorem: Let n be an integer. If n is even, then n2 is even.

hypotheses conclusion

Structure of the proof.
Let n be an integer, and suppose n is even. Then

...
(some argument)

...

so n2 is even. □

Important: Start with the hypotheses, end with the conclusion.
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Quantifiers

It’s important to recognise when a statement contains a quantifier.

▶ For a “for all” statement, we need to give a general argument that
works for every value of the variable.

(“For all” statements can also be phrased with “if . . . then” or “Let . . . ”.)

▶ For a “there exists” statement, we need to give an example of the thing
that’s supposed to exist, and say why it works.
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Proofs with several parts

Some proofs may have several parts. Set the proof out clearly, and explain
the parts.

▶ “If and only if” proofs: to prove P ⇔ Q , we might write:

“Suppose P is true. Then . . . , so Q is true.
Conversely, suppose Q is true . Then . . . , so P is true. □”

▶ Proofs with cases: sometimes we need different arguments to cover
different situations. We might write:

“We consider two cases.
First suppose . . . . Then . . . , so the theorem is true in this case.
Now suppose instead that . . . . Then . . . , so the theorem is true in
this case too. □”
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Disproving a statement

Disproving a statement means proving that it isn’t true, i.e. proving its
negation.

To disprove a “for all” statement, you just need to give one example where
the statement doesn’t hold. This is called a counterexample.

Non-Theorem 3.4: If n is a prime number, then 2n
− 1 is prime.

To find a counterexample, we need to find a prime number n such that
2n
− 1 isn’t prime.

n = 2,3,5,7 don’t work . . .
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