Quantifiers：for all

\square
\square －
\square $\rightarrow-(x)$ $+$
 \qquad

 0

 － ． ，

路元都

。
 ．

Quantifiers: for all

Given a statement with a variable, we can make it into an unconditional statement with "for all":

Quantifiers: for all

Given a statement with a variable, we can make it into an unconditional statement with "for all":

- n is prime.
depends on the variable n.

Quantifiers: for all

Given a statement with a variable, we can make it into an unconditional statement with "for all":

- n is prime.
depends on the variable n. But

Quantifiers: for all

Given a statement with a variable, we can make it into an unconditional statement with "for all":

- n is prime.
depends on the variable n. But
- n is prime for all integers n does not depend on the value of a variable.

Quantifiers: for all

Given a statement with a variable, we can make it into an unconditional statement with "for all":

- n is prime.
depends on the variable n. But
- n is prime for all integers n
does not depend on the value of a variable.
Lots of variations in wording:

Quantifiers: for all

Given a statement with a variable, we can make it into an unconditional statement with "for all":

- n is prime.
depends on the variable n. But
- n is prime for all integers n
does not depend on the value of a variable.
Lots of variations in wording:
- For every integer n, n is prime.
- Every integer is prime.
- If n is an integer, then n is prime.
- Let n be an integer. Then n is prime.

Quantifiers: there exists

Quantifiers: there exists

We can also use "there exists" to make a variable statement into an unconditional statement:

Quantifiers: there exists

We can also use "there exists" to make a variable statement into an unconditional statement:

- There exists an integer n such that n is prime does not depend on the value of a variable.

Quantifiers: there exists

We can also use "there exists" to make a variable statement into an unconditional statement:

- There exists an integer n such that n is prime does not depend on the value of a variable.

Variations in wording:

Quantifiers: there exists

We can also use "there exists" to make a variable statement into an unconditional statement:

- There exists an integer n such that n is prime does not depend on the value of a variable.

Variations in wording:

- n is prime for some integer n.
- There is a prime integer.

More examples

(a) There is a student who hasn't done the week 1 quiz.

More examples

(a) There is a student who hasn't done the week 1 quiz.
(b) Every student will do the week 2 quiz.

More examples

(a) There is a student who hasn't done the week 1 quiz.
(b) Every student will do the week 2 quiz.
(c) $x+1>x$ for all real numbers x.

More examples

(a) There is a student who hasn't done the week 1 quiz.
(b) Every student will do the week 2 quiz.
(c) $x+1>x$ for all real numbers x.
(d) $n^{2}>10$ for every integer n.

More examples

(a) There is a student who hasn't done the week 1 quiz.
(b) Every student will do the week 2 quiz.
(c) $x+1>x$ for all real numbers x.
(d) $n^{2}>10$ for every integer n.
(e) There is an integer n such that $n^{2}>10$.

More examples

(a) There is a student who hasn't done the week 1 quiz.
(b) Every student will do the week 2 quiz.
(c) $x+1>x$ for all real numbers x.
(d) $n^{2}>10$ for every integer n.
(e) There is an integer n such that $n^{2}>1000$.

More examples

(a) There is a student who hasn't done the week 1 quiz.
(b) Every student will do the week 2 quiz.
(c) $x+1>x$ for all real numbers x.
(d) $n^{2}>10$ for every integer n.
(e) There is an integer n such that $n^{2}>1000$.

More examples

(a) There is a student who hasn't done the week 1 quiz.
(b) Every student will do the week 2 quiz.
(c) $x+1>x$ for all real numbers x.
(d) $n^{2}>10$ for every integer n.
(e) There is an integer n such that $n^{2}>1000000$.

More examples

(a) There is a student who hasn't done the week 1 quiz.
(b) Every student will do the week 2 quiz.
(c) $x+1>x$ for all real numbers x.
(d) $n^{2}>10$ for every integer n.
(e) There is an integer n such that $n^{2}>1000000$.

