## Labelling statements

## Labelling statements

Just as we do for numbers, we often label statements with letters for easy reference.

## Labelling statements

Just as we do for numbers, we often label statements with letters for easy reference.

We may denote a statement $P$ or $Q$.

## Labelling statements

Just as we do for numbers, we often label statements with letters for easy reference.

We may denote a statement $P$ or $Q$. If a statement involves a variable $x$, we may denote it $P(x)$.

## Labelling statements

Just as we do for numbers, we often label statements with letters for easy reference.

We may denote a statement $P$ or $Q$. If a statement involves a variable $x$, we may denote it $P(x)$.
e.g. let $P(x)$ denote the statement " $x^{2} \leqslant 2$ ".

## Labelling statements

Just as we do for numbers, we often label statements with letters for easy reference.

We may denote a statement $P$ or $Q$. If a statement involves a variable $x$, we may denote it $P(x)$.
e.g. let $P(x)$ denote the statement " $x^{2} \leqslant 2$ ". Then $P(1)$ is true, but $P(2)$ is false.

## Combining statements to make new ones

## Combining statements to make new ones

Given two statements $P, Q$, we can make two new statements

$$
\text { " } P \text { and } Q \text { " " } P \text { or } Q \text { ". }
$$

## Combining statements to make new ones

Given two statements $P, Q$, we can make two new statements
" $P$ and $Q$ " " $P$ or $Q$ ".
" $P$ and $Q$ " is true provided both $P$ is true and $Q$ is true.

## Combining statements to make new ones

Given two statements $P, Q$, we can make two new statements

$$
\text { " } P \text { and } Q \text { " " } P \text { or } Q \text { ". }
$$

" $P$ and $Q$ " is true provided both $P$ is true and $Q$ is true.
" $P$ or $Q$ " is true provided $P$ is true or $Q$ is true or both.

## Combining statements to make new ones

Given two statements $P, Q$, we can make two new statements

$$
\text { " } P \text { and } Q \text { " " } P \text { or } Q \text { ". }
$$

" $P$ and $Q$ " is true provided both $P$ is true and $Q$ is true.
" $P$ or $Q$ " is true provided $P$ is true or $Q$ is true or both.
e.g. if $P=$ "Paris is in France" and $Q=$ "London is in Brazil", then

## Combining statements to make new ones

Given two statements $P, Q$, we can make two new statements

$$
\text { " } P \text { and } Q \text { " " } P \text { or } Q \text { ". }
$$

" $P$ and $Q$ " is true provided both $P$ is true and $Q$ is true.
" $P$ or $Q$ " is true provided $P$ is true or $Q$ is true or both.
e.g. if $P=$ "Paris is in France" and $Q=$ "London is in Brazil", then
" $P$ and $Q$ " says "Paris is in France and London is in Brazil", which is false

## Combining statements to make new ones

Given two statements $P, Q$, we can make two new statements

$$
\text { " } P \text { and } Q \text { " " } P \text { or } Q \text { ". }
$$

" $P$ and $Q$ " is true provided both $P$ is true and $Q$ is true.
" $P$ or $Q$ " is true provided $P$ is true or $Q$ is true or both.
e.g. if $P=$ "Paris is in France" and $Q=$ "London is in Brazil", then
" $P$ and $Q$ " says "Paris is in France and London is in Brazil", which is false "P or Q" says "Paris is in France or London is in Brazil", which is true.

Truth tables

## Truth tables

We use a truth table to show how the truth of a statement like " $P$ or $Q$ " depends on $P, Q$.

## Truth tables

We use a truth table to show how the truth of a statement like " $P$ or $Q$ " depends on $P, Q$.

| $P$ | $Q$ | $P$ or $Q$ |
| :---: | :---: | :---: |
| true | true | true |
| true | false | true |
| false | true | true |
| false | false | false |

## Truth tables

We use a truth table to show how the truth of a statement like " $P$ or $Q$ " depends on $P, Q$.

| $P$ | $Q$ | $P$ or $Q$ |
| :---: | :---: | :---: |
| true | true | true |
| true | false | true |
| false | true | true |
| false | false | false |

(The table should have one row for each combination of true/false for each of the statements $P, Q$.)

## More complex statements

## More complex statements

We can make more complex statements like " $(P$ and $Q)$ or $R$ ".

## More complex statements

We can make more complex statements like " $(P$ and $Q)$ or $R$ ".

| $P$ | $Q$ | $R$ |
| :---: | :---: | :---: |
| true | true | true |
| true | true | false $Q)$ or $R$ |
| true | false |  |
| true | false |  |
| false |  |  |
| false | true | true |
| false | true | false |
| false | false | true |
| false | false | false |

## More complex statements

We can make more complex statements like " $(P$ and $Q)$ or $R$ ".

| $P$ | $Q$ | $R$ | $(P$ and $Q)$ or $R$ |
| :---: | :---: | :---: | :---: |
| true | true | true | true |
| true | true | false |  |
| true | false | true |  |
| true | false | false |  |
| false | true | true |  |
| false | true | false |  |
| false | false | true |  |
| false | false | false |  |

## More complex statements

We can make more complex statements like " $(P$ and $Q)$ or $R$ ".

| $P$ | $Q$ | $R$ | $(P$ and $Q)$ or $R$ |
| :---: | :---: | :---: | :---: |
| true | true | true | true |
| true | true | false | true |
| true | false | true |  |
| true | false | false |  |
| false | true | true |  |
| false | true | false |  |
| false | false | true |  |
| false | false | false |  |

## More complex statements

We can make more complex statements like " $(P$ and $Q)$ or $R$ ".

| $P$ | $Q$ | $R$ | $(P$ and $Q)$ or $R$ |
| :---: | :---: | :---: | :---: |
| true | true | true | true |
| true | true | false | true |
| true | false | true | true |
| true | false | false |  |
| false | true | true |  |
| false | true | false |  |
| false | false | true |  |
| false | false | false |  |

## More complex statements

We can make more complex statements like " $(P$ and $Q)$ or $R$ ".

| $P$ | $Q$ | $R$ | $(P$ and $Q)$ or $R$ |
| :---: | :---: | :---: | :---: |
| true | true | true | true |
| true | true | false | true |
| true | false | true | true |
| true | false | false | false |
| false | true | true |  |
| false | true | false |  |
| false | false | true |  |
| false | false | false |  |

## More complex statements

We can make more complex statements like " $(P$ and $Q)$ or $R$ ".

| $P$ | $Q$ | $R$ | $(P$ and $Q)$ or $R$ |
| :---: | :---: | :---: | :---: |
| true | true | true | true |
| true | true | false | true |
| true | false | true | true |
| true | false | false | false |
| false | true | true | true |
| false | true | false |  |
| false | false | true |  |
| false | false | false |  |

## More complex statements

We can make more complex statements like " $(P$ and $Q)$ or $R$ ".

| $P$ | $Q$ | $R$ | $(P$ and $Q)$ or $R$ |
| :---: | :---: | :---: | :---: |
| true | true | true | true |
| true | true | false | true |
| true | false | true | true |
| true | false | false | false |
| false | true | true | true |
| false | true | false | false |
| false | false | true |  |
| false | false | false |  |

## More complex statements

We can make more complex statements like " $(P$ and $Q)$ or $R$ ".

| $P$ | $Q$ | $R$ | $(P$ and $Q)$ or $R$ |
| :---: | :---: | :---: | :---: |
| true | true | true | true |
| true | true | false | true |
| true | false | true | true |
| true | false | false | false |
| false | true | true | true |
| false | true | false | false |
| false | false | true | true |
| false | false | false |  |

## More complex statements

We can make more complex statements like " $(P$ and $Q)$ or $R$ ".

| $P$ | $Q$ | $R$ | $(P$ and $Q)$ or $R$ |
| :---: | :---: | :---: | :---: |
| true | true | true | true |
| true | true | false | true |
| true | false | true | true |
| true | false | false | false |
| false | true | true | true |
| false | true | false | false |
| false | false | true | true |
| false | false | false | false |

## More complex statements

We can make more complex statements like " $(P$ and $Q)$ or $R$ ".

| $P$ | $Q$ | $R$ | $(P$ and $Q)$ or $R$ |
| :---: | :---: | :---: | :---: |
| true | true | true | true |
| true | true | false | true |
| true | false | true | true |
| true | false | false | false |
| false | true | true | true |
| false | true | false | false |
| false | false | true | true |
| false | false | false | false |

( $P$ and $Q$ ) or $R$ is not equivalent to $P$ and ( $Q$ or $R$ ). Brackets are important!

Negation

## Negation

If $P$ is a statement, the negation of $P$ is the statement " $P$ is not true".

## Negation

If $P$ is a statement, the negation of $P$ is the statement " $P$ is not true".

- The negation of "Paris is in France" is


## Negation

If $P$ is a statement, the negation of $P$ is the statement " $P$ is not true".

- The negation of "Paris is in France" is "Paris is not in France".


## Negation

If $P$ is a statement, the negation of $P$ is the statement " $P$ is not true".

- The negation of "Paris is in France" is "Paris is not in France".
- The negation of "this is not an awesome lecture" is


## Negation

If $P$ is a statement, the negation of $P$ is the statement " $P$ is not true".

- The negation of "Paris is in France" is "Paris is not in France".
- The negation of "this is not an awesome lecture" is "this is an awesome lecture".


## Negation

If $P$ is a statement, the negation of $P$ is the statement " $P$ is not true".

- The negation of "Paris is in France" is "Paris is not in France".
- The negation of "this is not an awesome lecture" is "this is an awesome lecture".
- The negation of " $x=2$ " is " $x \neq 2$ ".


## Negation

If $P$ is a statement, the negation of $P$ is the statement " $P$ is not true".

- The negation of "Paris is in France" is "Paris is not in France".
- The negation of "this is not an awesome lecture" is "this is an awesome lecture".
- The negation of " $x=2$ " is " $x \neq 2$ ".
- The negation of " $x=2$ and $y=0$ " is " $x \neq 2$ or $y \neq 0$ ".


## Negation

If $P$ is a statement, the negation of $P$ is the statement " $P$ is not true".

- The negation of "Paris is in France" is "Paris is not in France".
- The negation of "this is not an awesome lecture" is "this is an awesome lecture".
- The negation of " $x=2$ " is " $x \neq 2$ ".
- The negation of " $x=2$ and $y=0$ " is " $x \neq 2$ or $y \neq 0$ ".
- The negation of " $x=2$ or $y=0$ " is " $x \neq 2$ and $y \neq 0$ ".


## Negation

If $P$ is a statement, the negation of $P$ is the statement " $P$ is not true".

- The negation of "Paris is in France" is "Paris is not in France".
- The negation of "this is not an awesome lecture" is "this is an awesome lecture".
- The negation of " $x=2$ " is " $x \neq 2$ ".
- The negation of " $x=2$ and $y=0$ " is " $x \neq 2$ or $y \neq 0$ ".
- The negation of " $x=2$ or $y=0$ " is " $x \neq 2$ and $y \neq 0$ ".

The last two examples show that "and" and "or" get swapped by negation:

## Negation

If $P$ is a statement, the negation of $P$ is the statement " $P$ is not true".

- The negation of "Paris is in France" is "Paris is not in France".
- The negation of "this is not an awesome lecture" is "this is an awesome lecture".
- The negation of " $x=2$ " is " $x \neq 2$ ".
- The negation of " $x=2$ and $y=0$ " is " $x \neq 2$ or $y \neq 0$ ".
- The negation of " $x=2$ or $y=0$ " is " $x \neq 2$ and $y \neq 0$ ".

The last two examples show that "and" and "or" get swapped by negation: not $(P$ and $Q)$ is equivalent to $(\operatorname{not} P)$ or $(\operatorname{not} Q)$.

Implications

## Implications

Suppose $P$ and $Q$ are statements. The statement "if $P$ then $Q$ " is called an implication.

## Implications

Suppose $P$ and $Q$ are statements. The statement "if $P$ then $Q$ " is called an implication.

It is false if $P$ is true and $Q$ is false, and true otherwise.

## Implications

Suppose $P$ and $Q$ are statements. The statement "if $P$ then $Q$ " is called an implication.

It is false if $P$ is true and $Q$ is false, and true otherwise.

| $P$ | $Q$ | $P \Rightarrow Q$ |
| :---: | :---: | :---: |
| true | true | true |
| true | false | false |
| false | true | true |
| false | false | true |

Variations in wording

## Variations in wording

"If $P$ then $Q$ " can be written as

- $Q$ if $P$
- $P$ implies $Q$
- $Q$ is implied by $P$
- $P$ is sufficient for $Q$
- $Q$ is necessary for $P$
- $P \Rightarrow Q$.
- $P$ only if $Q$


## Implications with variables

## Implications with variables

Most implications that we see involve variables.

## Implications with variables

Most implications that we see involve variables. An implication $P \Rightarrow Q$ is regarded as true provided it is true for all values of the variables.

## Implications with variables

Most implications that we see involve variables. An implication $P \Rightarrow Q$ is regarded as true provided it is true for all values of the variables.

- $(n \geqslant 4) \Rightarrow(n \geqslant 3)$ is a true implication


## Implications with variables

Most implications that we see involve variables. An implication $P \Rightarrow Q$ is regarded as true provided it is true for all values of the variables.

- $(n \geqslant 4) \Rightarrow(n \geqslant 3)$ is a true implication
- $(n$ is prime $) \Rightarrow(n$ is odd $)$ is a false implication.

