
Complex conjugate

If z = a + bi, then the number a− bi is called the complex conjugate of z. We
write this as z.

z + z = 2a is a real number
zz = a2 + b2 is a non-negative real number
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The complex plane

Complex plane: 2-dimensional space, with (a, b) representing the complex
number a + bi.
The x-axis is called the real axis.
The y -axis is called the imaginary axis.
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Adding in the complex plane

(a + bi) + (c + d i) = (a + c) + (b + d)i.

In the complex plane, this is like adding vectors:

z

w
w + z

The points 0, z, w and z + w form a parallelogram.
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Polar form

z = a + bi. Let r be the distance from z to 0. Let θ be the anticlockwise angle
from the real axis to the line from 0 to z.

θ

a + bi

a

bi

r
a= r cos θ
b = r sin θ

r =
√

a2 + b2

θ= tan −1(b/a)

So
z = r(cos θ + i sin θ) ←− polar form of z

r is the modulus of z, and θ is the argument of z.
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Multiplying using polar form

Given z,w ∈ C, write them in polar form:

z = r(cos θ + i sin θ)

w = s(cosϕ+ i sinϕ).

Then (using trig formulas)

zw = rs(cos (θ + ϕ) + i sin (θ + ϕ))

So to multiply complex numbers, we multiply moduli and add arguments.

So multiplying by z means stretching by a factor |z| and rotating through angle
arg (z).
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De Moivre’s Theorem

De Moivre’s Theorem:

(cos θ + i sin θ)n = cos (nθ) + i sin (nθ).

(Proof by induction, using trig formulas.)
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Roots of unity

Question: what are the solutions of the equation zn = 1?

If z ∈ R, not many:
▶ if n is odd, z = 1 is the only solution
▶ if n is even, z = 1 and z = −1 are the only solutions.

But in C, De Moivre’s Theorem shows that there are n solutions: these are the
complex numbers

cos
(

2πm
n

)
+ i sin

(
2πm

n

)
for m ∈ Z. (In fact, just need m = 0, 1, . . . , n − 1.)
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Solutions of z5 = 1

1

cos 2π
5 + i sin 2π

5

cos 4π
5 + i sin 4π

5

cos 6π
5 + i sin 6π

5

cos 8π
5 + i sin 8π

5
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Solving equations

We have seen that:
▶ every complex number has complex square roots (so we can solve the

equation x2 = z)
▶ the equation zn = 1 has n solutions.

In fact:

Fundamental Theorem of Algebra: Any equation of the form

zn + an−1zn−1 + · · ·+ a1z + a0 = 0

(with an−1, . . . , a1, a0 ∈ C) has n roots in C.
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