Complex conjugate

Complex conjugate

If $z=a+b i$, then the number $a-b i$ is called the complex conjugate of z. We write this as \bar{z}.

Complex conjugate

If $z=a+b i$, then the number $a-b i$ is called the complex conjugate of z. We write this as \bar{z}.
$z+\bar{z}=2 a$ is a real number
$z \bar{z}=a^{2}+b^{2}$ is a non-negative real number

The complex plane

The complex plane

Complex plane: 2-dimensional space, with (a, b) representing the complex number $a+b \mathrm{i}$.

The complex plane

Complex plane: 2-dimensional space, with (a, b) representing the complex number $a+b \mathrm{i}$.
The x-axis is called the real axis.

The complex plane

Complex plane: 2-dimensional space, with (a, b) representing the complex number $a+b \mathrm{i}$.
The x-axis is called the real axis.
The y-axis is called the imaginary axis.

Adding in the complex plane

Adding in the complex plane

$$
(a+b \mathrm{i})+(c+d \mathrm{i})=(a+c)+(b+d) \mathrm{i}
$$

Adding in the complex plane

$$
(a+b \mathrm{i})+(c+d \mathrm{i})=(a+c)+(b+d) \mathrm{i}
$$

In the complex plane, this is like adding vectors:

Adding in the complex plane

$$
(a+b \mathrm{i})+(c+d \mathrm{i})=(a+c)+(b+d) \mathrm{i}
$$

In the complex plane, this is like adding vectors:

The points $0, z, w$ and $z+w$ form a parallelogram.

Polar form

Polar form

$$
z=a+b i
$$

Polar form

$z=a+b i$. Let r be the distance from z to 0 . Let θ be the anticlockwise angle from the real axis to the line from 0 to z.

Polar form

$z=a+b i$. Let r be the distance from z to 0 . Let θ be the anticlockwise angle from the real axis to the line from 0 to z.

Polar form

$z=a+b$ i. Let r be the distance from z to 0 . Let θ be the anticlockwise angle from the real axis to the line from 0 to z.

$$
\begin{aligned}
a & =r \cos \theta \\
b & =r \sin \theta \\
r & =\sqrt{a^{2}+b^{2}} \\
\theta & =\tan ^{-1}(b / a)
\end{aligned}
$$

Polar form

$z=a+b i$. Let r be the distance from z to 0 . Let θ be the anticlockwise angle from the real axis to the line from 0 to z.

$$
\begin{aligned}
& a=r \cos \theta \\
& b=r \sin \theta \\
& r=\sqrt{a^{2}+b^{2}} \\
& \theta=\tan ^{-1}(b / a)
\end{aligned}
$$

So

$$
z=r(\cos \theta+\mathrm{i} \sin \theta)
$$

Polar form

$z=a+b i$. Let r be the distance from z to 0 . Let θ be the anticlockwise angle from the real axis to the line from 0 to z.

$$
\begin{aligned}
& a=r \cos \theta \\
& b=r \sin \theta \\
& r=\sqrt{a^{2}+b^{2}} \\
& \theta=\tan ^{-1}(b / a)
\end{aligned}
$$

So

$$
z=r(\cos \theta+\mathrm{i} \sin \theta) \quad \longleftarrow \text { polar form of } z
$$

Polar form

$z=a+b$ i. Let r be the distance from z to 0 . Let θ be the anticlockwise angle from the real axis to the line from 0 to z.

$$
\begin{aligned}
& a=r \cos \theta \\
& b=r \sin \theta \\
& r=\sqrt{a^{2}+b^{2}} \\
& \theta=\tan ^{-1}(b / a)
\end{aligned}
$$

So

$$
z=r(\cos \theta+\mathrm{i} \sin \theta) \quad \longleftarrow \text { polar form of } z
$$

r is the modulus of z, and θ is the argument of z.

Multiplying using polar form

Given $z, w \in \mathbb{C}$, write them in polar form:

$$
\begin{aligned}
z & =r(\cos \theta+\mathrm{i} \sin \theta) \\
w & =s(\cos \phi+\mathrm{i} \sin \phi)
\end{aligned}
$$

Multiplying using polar form

Given $z, w \in \mathbb{C}$, write them in polar form:

$$
\begin{aligned}
z & =r(\cos \theta+i \sin \theta) \\
w & =s(\cos \phi+i \sin \phi)
\end{aligned}
$$

Then (using trig formulas)

$$
z w=r s(\cos (\theta+\phi)+i \sin (\theta+\phi))
$$

Multiplying using polar form

Given $z, w \in \mathbb{C}$, write them in polar form:

$$
\begin{aligned}
z & =r(\cos \theta+i \sin \theta) \\
w & =s(\cos \phi+i \sin \phi)
\end{aligned}
$$

Then (using trig formulas)

$$
z w=r s(\cos (\theta+\phi)+i \sin (\theta+\phi))
$$

So to multiply complex numbers, we multiply moduli and add arguments.

Multiplying using polar form

Given $z, w \in \mathbb{C}$, write them in polar form:

$$
\begin{aligned}
z & =r(\cos \theta+i \sin \theta) \\
w & =s(\cos \phi+i \sin \phi)
\end{aligned}
$$

Then (using trig formulas)

$$
z w=r s(\cos (\theta+\phi)+i \sin (\theta+\phi))
$$

So to multiply complex numbers, we multiply moduli and add arguments.
So multiplying by z means stretching by a factor $|z|$ and rotating through angle $\arg (z)$.

De Moivre's Theorem

De Moivre's Theorem

De Moivre's Theorem:

$$
(\cos \theta+\mathrm{i} \sin \theta)^{n}=\cos (n \theta)+\mathrm{i} \sin (n \theta)
$$

De Moivre's Theorem

De Moivre's Theorem:

$$
(\cos \theta+\mathrm{i} \sin \theta)^{n}=\cos (n \theta)+\mathrm{i} \sin (n \theta)
$$

(Proof by induction, using trig formulas.)

Roots of unity

Roots of unity

Question: what are the solutions of the equation $z^{n}=1$?

Roots of unity

Question: what are the solutions of the equation $z^{n}=1$?

If $z \in \mathbb{R}$, not many:

Roots of unity

Question: what are the solutions of the equation $z^{n}=1$?

If $z \in \mathbb{R}$, not many:

- if n is odd, $z=1$ is the only solution

Roots of unity

Question: what are the solutions of the equation $z^{n}=1$?

If $z \in \mathbb{R}$, not many:

- if n is odd, $z=1$ is the only solution
- if n is even, $z=1$ and $z=-1$ are the only solutions.

Roots of unity

Question: what are the solutions of the equation $z^{n}=1$?

If $z \in \mathbb{R}$, not many:

- if n is odd, $z=1$ is the only solution
- if n is even, $z=1$ and $z=-1$ are the only solutions.

But in \mathbb{C}, De Moivre's Theorem shows that there are n solutions: these are the complex numbers

$$
\cos \left(\frac{2 \pi m}{n}\right)+\mathrm{i} \sin \left(\frac{2 \pi m}{n}\right)
$$

for $m \in \mathbb{Z}$. (In fact, just need $m=0,1, \ldots, n-1$.)

Solutions of $z^{5}=1$

$$
\begin{aligned}
& \cos \frac{4 \pi}{5}+i \sin \frac{4 \pi}{5} \bullet \bullet \\
& \cos \frac{6 \pi}{5}+i \sin \frac{6 \pi}{5}
\end{aligned} \overbrace{1}^{\cos \frac{2 \pi}{5}+i \sin \frac{2 \pi}{5}}
$$

Solutions of $z^{5}=1$

Solving equations

Solving equations

We have seen that:

Solving equations

We have seen that:

- every complex number has complex square roots (so we can solve the equation $x^{2}=z$)

Solving equations

We have seen that:

- every complex number has complex square roots (so we can solve the equation $x^{2}=z$)
- the equation $z^{n}=1$ has n solutions.

Solving equations

We have seen that:

- every complex number has complex square roots (so we can solve the equation $x^{2}=z$)
- the equation $z^{n}=1$ has n solutions.

In fact:
Fundamental Theorem of Algebra: Any equation of the form

$$
z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0}=0
$$

(with $a_{n-1}, \ldots, a_{1}, a_{0} \in \mathbb{C}$) has n roots in \mathbb{C}.

