Complex numbers

Complex numbers

In \mathbb{R} we cannot solve the equation $x^{2}=-1$.

Complex numbers

In \mathbb{R} we cannot solve the equation $x^{2}=-1$. So we add a new number i , defined to be a square root of -1 .

Complex numbers

In \mathbb{R} we cannot solve the equation $x^{2}=-1$. So we add a new number i , defined to be a square root of -1 .

Complex number: an expression $a+b \mathrm{i}$, where $a, b \in \mathbb{R}$.

Complex numbers

In \mathbb{R} we cannot solve the equation $x^{2}=-1$. So we add a new number i , defined to be a square root of -1 .

Complex number: an expression $a+b \mathrm{i}$, where $a, b \in \mathbb{R}$.

$$
1+2 i, \quad 2-i, \quad 4-6 \sqrt{2} i, \ldots .
$$

Complex numbers

In \mathbb{R} we cannot solve the equation $x^{2}=-1$. So we add a new number i , defined to be a square root of -1 .

Complex number: an expression $a+b i$, where $a, b \in \mathbb{R}$.

$$
1+2 i, \quad 2-i, \quad 4-6 \sqrt{2} i, \ldots
$$

\mathbb{C} denotes the set of all complex numbers.

Complex numbers

In \mathbb{R} we cannot solve the equation $x^{2}=-1$. So we add a new number i , defined to be a square root of -1 .

Complex number: an expression $a+b \mathrm{i}$, where $a, b \in \mathbb{R}$.

$$
1+2 i, \quad 2-i, \quad 4-6 \sqrt{2} i, \ldots .
$$

\mathbb{C} denotes the set of all complex numbers.
If $a \in \mathbb{R}$, then we can think of a as the complex number $a+0 \mathrm{i}$.

Complex numbers

In \mathbb{R} we cannot solve the equation $x^{2}=-1$. So we add a new number i , defined to be a square root of -1 .

Complex number: an expression $a+b \mathrm{i}$, where $a, b \in \mathbb{R}$.

$$
1+2 i, \quad 2-i, \quad 4-6 \sqrt{2} i, \ldots .
$$

\mathbb{C} denotes the set of all complex numbers.
If $a \in \mathbb{R}$, then we can think of a as the complex number $a+0 i$. So $\mathbb{R} \subset \mathbb{C}$.

Complex numbers

In \mathbb{R} we cannot solve the equation $x^{2}=-1$. So we add a new number i , defined to be a square root of -1 .

Complex number: an expression $a+b \mathrm{i}$, where $a, b \in \mathbb{R}$.

$$
1+2 i, \quad 2-i, \quad 4-6 \sqrt{2} i, \ldots .
$$

\mathbb{C} denotes the set of all complex numbers.
If $a \in \mathbb{R}$, then we can think of a as the complex number $a+0 i$. So $\mathbb{R} \subset \mathbb{C}$.
If $z=a+b \mathrm{i}$, then a is the real part of z, and b is the imaginary part.

Arithmetic in \mathbb{C}

Arintic

\qquad

Arithmetic in \mathbb{C}

To add complex numbers, just add the real and imaginary parts separately:

Arithmetic in \mathbb{C}

To add complex numbers, just add the real and imaginary parts separately:

$$
(a+b \mathrm{i})+(c+d \mathrm{i})=(a+c)+(b+d) \mathrm{i} .
$$

Arithmetic in \mathbb{C}

To add complex numbers, just add the real and imaginary parts separately:

$$
(a+b \mathrm{i})+(c+d \mathrm{i})=(a+c)+(b+d) \mathrm{i} .
$$

Similarly for subtraction:

Arithmetic in \mathbb{C}

To add complex numbers, just add the real and imaginary parts separately:

$$
(a+b \mathrm{i})+(c+d \mathrm{i})=(a+c)+(b+d) \mathrm{i} .
$$

Similarly for subtraction:

$$
(a+b \mathrm{i})-(c+d \mathrm{i})=(a-c)+(b-d) \mathrm{i} .
$$

Arithmetic in \mathbb{C}

To add complex numbers, just add the real and imaginary parts separately:

$$
(a+b \mathrm{i})+(c+d \mathrm{i})=(a+c)+(b+d) \mathrm{i} .
$$

Similarly for subtraction:

$$
(a+b \mathrm{i})-(c+d \mathrm{i})=(a-c)+(b-d) \mathrm{i} .
$$

So

Arithmetic in \mathbb{C}

To add complex numbers, just add the real and imaginary parts separately:

$$
(a+b \mathrm{i})+(c+d \mathrm{i})=(a+c)+(b+d) \mathrm{i} .
$$

Similarly for subtraction:

$$
(a+b \mathrm{i})-(c+d \mathrm{i})=(a-c)+(b-d) \mathrm{i} .
$$

So

$$
(2+7 i)+(-3+i)=-1+8 i
$$

Arithmetic in \mathbb{C}

To add complex numbers, just add the real and imaginary parts separately:

$$
(a+b \mathrm{i})+(c+d \mathrm{i})=(a+c)+(b+d) \mathrm{i} .
$$

Similarly for subtraction:

$$
(a+b \mathrm{i})-(c+d \mathrm{i})=(a-c)+(b-d) \mathrm{i} .
$$

So

$$
\begin{aligned}
& (2+7 i)+(-3+i)=-1+8 i \\
& (2+7 i)-(-3+i)=5+6 i .
\end{aligned}
$$

Arithmetic in \mathbb{C}

Arintic

\qquad

Arithmetic in \mathbb{C}

To multiply complex numbers, we multiply out algebraically and use the rule $\mathrm{i}^{2}=-1$:

Arithmetic in \mathbb{C}

To multiply complex numbers, we multiply out algebraically and use the rule $\mathrm{i}^{2}=-1$:

$$
(a+b \mathrm{i}) \times(c+d i)=a c+a d i+b c i+b d \mathrm{i}^{2}
$$

Arithmetic in \mathbb{C}

To multiply complex numbers, we multiply out algebraically and use the rule $\mathrm{i}^{2}=-1$:

$$
\begin{aligned}
(a+b \mathrm{i}) \times(c+d i) & =a c+a d \mathrm{i}+b c \mathrm{i}+b d \mathrm{i}^{2} \\
& =(a c-b d)+(a d+b c) \mathrm{i} .
\end{aligned}
$$

Arithmetic in \mathbb{C}

To multiply complex numbers, we multiply out algebraically and use the rule $\mathrm{i}^{2}=-1$:

$$
\begin{aligned}
&(a+b \mathrm{i}) \times(c+d \mathrm{i})=a c+a d \mathrm{i}+b c \mathrm{i}+b d \mathrm{i}^{2} \\
&=(a c-b d)+(a d+b c) \mathrm{i} . \\
&(3+2 \mathrm{i})(4+5 \mathrm{i})=2+23 \mathrm{i}
\end{aligned}
$$

Arithmetic in \mathbb{C}

To multiply complex numbers, we multiply out algebraically and use the rule $\mathrm{i}^{2}=-1$:

$$
\begin{aligned}
&(a+b \mathrm{i}) \times(c+d \mathrm{i})=a c+a d \mathrm{i}+b c \mathrm{i}+b d \mathrm{i}^{2} \\
&=(a c-b d)+(a d+b c) \mathrm{i} . \\
&(3+2 \mathrm{i})(4+5 \mathrm{i})=2+23 \mathrm{i} \\
&(6-\mathrm{i})(4+3 \mathrm{i})=
\end{aligned}
$$

Arithmetic in \mathbb{C}

To multiply complex numbers, we multiply out algebraically and use the rule $\mathrm{i}^{2}=-1$:

$$
\begin{gathered}
(a+b i) \times(c+d i)=a c+a d i+b c i+b d i^{2} \\
=(a c-b d)+(a d+b c) i \\
(3+2 i)(4+5 i)=2+23 i \\
(6-i)(4+3 i)=27+14 i
\end{gathered}
$$

Arithmetic in \mathbb{C}

To multiply complex numbers, we multiply out algebraically and use the rule $\mathrm{i}^{2}=-1$:

$$
\begin{aligned}
&(a+b \mathrm{i}) \times(c+d i)=a c+a d \mathrm{i}+b c \mathrm{i}+b d \mathrm{i}^{2} \\
&=(a c-b d)+(a d+b c) \mathrm{i} . \\
&(3+2 \mathrm{i})(4+5 \mathrm{i})=2+23 \mathrm{i} \\
&(6-\mathrm{i})(4+3 \mathrm{i})=27+14 \mathrm{i} \\
&(3+2 \mathrm{i})(3-2 \mathrm{i})=
\end{aligned}
$$

Arithmetic in \mathbb{C}

To multiply complex numbers, we multiply out algebraically and use the rule $\mathrm{i}^{2}=-1$:

$$
\begin{gathered}
(a+b i) \times(c+d i)=a c+a d i+b c i+b d i^{2} \\
=(a c-b d)+(a d+b c) i \\
(3+2 i)(4+5 i)=2+23 i \\
(6-i)(4+3 i)=27+14 i \\
(3+2 i)(3-2 i)=13+0 i=13
\end{gathered}
$$

Arithmetic in \mathbb{C}

To multiply complex numbers, we multiply out algebraically and use the rule $\mathrm{i}^{2}=-1$:

$$
\begin{gathered}
(a+b i) \times(c+d i)=a c+a d i+b c i+b d i^{2} \\
=(a c-b d)+(a d+b c) i \\
(3+2 i)(4+5 i)=2+23 i \\
(6-i)(4+3 i)=27+14 i \\
(3+2 i)(3-2 i)=13+0 i=13
\end{gathered}
$$

$$
(-i)(-i)=-1
$$

Dividing in \mathbb{C}

Dividing in \mathbb{C}

How do we divide in \mathbb{C} ?

Dividing in \mathbb{C}

How do we divide in \mathbb{C} ?
Dividing by a real number is straightforward:

Dividing in \mathbb{C}

How do we divide in \mathbb{C} ?
Dividing by a real number is straightforward:

$$
\frac{(a+b \mathrm{i})}{c}=\frac{a}{c}+\frac{b}{c} \mathrm{i} .
$$

Dividing in \mathbb{C}

How do we divide in \mathbb{C} ?
Dividing by a real number is straightforward:

$$
\frac{(a+b \mathrm{i})}{c}=\frac{a}{c}+\frac{b}{c} \mathrm{i}
$$

To divide in general: suppose $c+d i \neq 0$.

Dividing in \mathbb{C}

How do we divide in \mathbb{C} ?
Dividing by a real number is straightforward:

$$
\frac{(a+b \mathrm{i})}{c}=\frac{a}{c}+\frac{b}{c} \mathrm{i}
$$

To divide in general: suppose $c+d i \neq 0$. Observe that

$$
(c+d i)(c-d i)=c^{2}+d^{2},
$$

Dividing in \mathbb{C}

How do we divide in \mathbb{C} ?
Dividing by a real number is straightforward:

$$
\frac{(a+b \mathrm{i})}{c}=\frac{a}{c}+\frac{b}{c} \mathrm{i}
$$

To divide in general: suppose $c+d i \neq 0$. Observe that

$$
(c+d i)(c-d i)=c^{2}+d^{2},
$$

SO

$$
\frac{1}{c+d \mathrm{i}}=\frac{c-d \mathrm{i}}{c^{2}+d^{2}} .
$$

Dividing in \mathbb{C}

How do we divide in \mathbb{C} ?
Dividing by a real number is straightforward:

$$
\frac{(a+b \mathrm{i})}{c}=\frac{a}{c}+\frac{b}{c} \mathrm{i} .
$$

To divide in general: suppose $c+d i \neq 0$. Observe that

$$
(c+d i)(c-d i)=c^{2}+d^{2},
$$

so

$$
\frac{1}{c+d \mathrm{i}}=\frac{c-d \mathrm{i}}{c^{2}+d^{2}}
$$

So to divide by $c+d i$, we just multiply by $\frac{c-d i}{c^{2}+d^{2}}$.

Dividing in \mathbb{C}

To divide by $c+d i$, we just multiply by $\frac{c-d i}{c^{2}+d^{2}}$.

Dividing in \mathbb{C}

To divide by $c+d i$, we just multiply by $\frac{c-d i}{c^{2}+d^{2}}$.

$$
\frac{3+2 i}{3+4 i}=\frac{(3+2 i)(3-4 i)}{3^{2}+4^{2}}=\frac{17-6 i}{25}=\frac{17}{25}-\frac{6}{25} i
$$

Dividing in \mathbb{C}

To divide by $c+d i$, we just multiply by $\frac{c-d i}{c^{2}+d^{2}}$.

$$
\begin{aligned}
& \frac{3+2 i}{3+4 i}=\frac{(3+2 i)(3-4 i)}{3^{2}+4^{2}}=\frac{17-6 i}{25}=\frac{17}{25}-\frac{6}{25} i \\
& \frac{1+2 i}{5-i}=
\end{aligned}
$$

Dividing in \mathbb{C}

To divide by $c+d \mathrm{i}$, we just multiply by $\frac{c-d \mathrm{i}}{c^{2}+d^{2}}$.

$$
\begin{aligned}
& \frac{3+2 \mathrm{i}}{3+4 \mathrm{i}}=\frac{(3+2 \mathrm{i})(3-4 \mathrm{i})}{3^{2}+4^{2}}=\frac{17-6 \mathrm{i}}{25}=\frac{17}{25}-\frac{6}{25} \mathrm{i} \\
& \frac{1+2 \mathrm{i}}{5-\mathrm{i}}=\frac{(1+2 \mathrm{i})(5+\mathrm{i})}{5^{2}+1^{2}}=\frac{3+11 \mathrm{i}}{26}=\frac{3}{26}+\frac{11}{26} \mathrm{i}
\end{aligned}
$$

Dividing in \mathbb{C}

To divide by $c+d$ i, we just multiply by $\frac{c-d i}{c^{2}+d^{2}}$.

$$
\begin{aligned}
& \frac{3+2 \mathrm{i}}{3+4 \mathrm{i}}=\frac{(3+2 \mathrm{i})(3-4 \mathrm{i})}{3^{2}+4^{2}}=\frac{17-6 \mathrm{i}}{25}=\frac{17}{25}-\frac{6}{25} \mathrm{i} \\
& \frac{1+2 \mathrm{i}}{5-\mathrm{i}}=\frac{(1+2 \mathrm{i})(5+\mathrm{i})}{5^{2}+1^{2}}=\frac{3+11 \mathrm{i}}{26}=\frac{3}{26}+\frac{11}{26} \mathrm{i}
\end{aligned}
$$

$$
\frac{4+2 i}{2-i}=
$$

Dividing in \mathbb{C}

To divide by $c+d$ i, we just multiply by $\frac{c-d i}{c^{2}+d^{2}}$.

$$
\begin{gathered}
\frac{3+2 \mathrm{i}}{3+4 \mathrm{i}}=\frac{(3+2 \mathrm{i})(3-4 \mathrm{i})}{3^{2}+4^{2}}=\frac{17-6 \mathrm{i}}{25}=\frac{17}{25}-\frac{6}{25} \mathrm{i} \\
\frac{1+2 \mathrm{i}}{5-\mathrm{i}}=\frac{(1+2 \mathrm{i})(5+\mathrm{i})}{5^{2}+1^{2}}=\frac{3+11 \mathrm{i}}{26}=\frac{3}{26}+\frac{11}{26} \mathrm{i} \\
\frac{4+2 \mathrm{i}}{2-\mathrm{i}}=\frac{(4+2 \mathrm{i})(2+\mathrm{i})}{2^{2}+1^{2}}=\frac{8}{5} \mathrm{i}
\end{gathered}
$$

