Reminder: Learning support hour 11:30-12:30 on Fridays
In my office: maths 512.
Please come along if you have any questions about the module.

Manipulating sums

Three techniques for manipulating sums:

Manipulating sums

Three techniques for manipulating sums:

- Can split up the summand:

Manipulating sums

Three techniques for manipulating sums:

- Can split up the summand:

$$
\sum_{n=1}^{50}\left((n+1)^{2}-n^{2}\right)
$$

Manipulating sums

Three techniques for manipulating sums:

- Can split up the summand:

$$
\sum_{n=1}^{50}\left((n+1)^{2}-n^{2}\right)=\sum_{n=1}^{50}(n+1)^{2}-\sum_{n=1}^{50} n^{2}
$$

Manipulating sums

Three techniques for manipulating sums:

- Can split up the summand:

$$
\sum_{n=1}^{50}\left((n+1)^{2}-n^{2}\right)=\sum_{n=1}^{50}(n+1)^{2}-\sum_{n=1}^{50} n^{2}
$$

- Can split up the range of summation:

Manipulating sums

Three techniques for manipulating sums:

- Can split up the summand:

$$
\sum_{n=1}^{50}\left((n+1)^{2}-n^{2}\right)=\sum_{n=1}^{50}(n+1)^{2}-\sum_{n=1}^{50} n^{2}
$$

- Can split up the range of summation:

$$
\sum_{n=1}^{10}\left(n^{2}-6\right)
$$

Manipulating sums

Three techniques for manipulating sums:

- Can split up the summand:

$$
\sum_{n=1}^{50}\left((n+1)^{2}-n^{2}\right)=\sum_{n=1}^{50}(n+1)^{2}-\sum_{n=1}^{50} n^{2}
$$

- Can split up the range of summation:

$$
\sum_{n=1}^{10}\left(n^{2}-6\right)=\sum_{n=1}^{5}\left(n^{2}-6\right)+\sum_{n=6}^{10}\left(n^{2}-6\right)
$$

Manipulating sums

Three techniques for manipulating sums:

- Can split up the summand:

$$
\sum_{n=1}^{50}\left((n+1)^{2}-n^{2}\right)=\sum_{n=1}^{50}(n+1)^{2}-\sum_{n=1}^{50} n^{2}
$$

- Can split up the range of summation:

$$
\sum_{n=1}^{10}\left(n^{2}-6\right)=\sum_{n=1}^{5}\left(n^{2}-6\right)+\sum_{n=6}^{10}\left(n^{2}-6\right)
$$

Special case: can split off just the last term:

$$
\sum_{n=1}^{10}\left(n^{2}-6\right)
$$

Manipulating sums

Three techniques for manipulating sums:

- Can split up the summand:

$$
\sum_{n=1}^{50}\left((n+1)^{2}-n^{2}\right)=\sum_{n=1}^{50}(n+1)^{2}-\sum_{n=1}^{50} n^{2}
$$

- Can split up the range of summation:

$$
\sum_{n=1}^{10}\left(n^{2}-6\right)=\sum_{n=1}^{5}\left(n^{2}-6\right)+\sum_{n=6}^{10}\left(n^{2}-6\right)
$$

Special case: can split off just the last term:

$$
\sum_{n=1}^{10}\left(n^{2}-6\right)=\sum_{n=1}^{9}\left(n^{2}-6\right)+10^{2}-6
$$

Manipulating sums

- Can shift the dummy variable:

Manipulating sums

- Can shift the dummy variable: given

$$
\dot{m}^{(m+1)}
$$

Manipulating sums

- Can shift the dummy variable: given

$$
\sum_{n=0}^{6}(n+1)^{3}
$$

can let $m=n+1$.

Manipulating sums

- Can shift the dummy variable: given

$$
\sum_{n=0}^{6}(n+1)^{3}
$$

can let $m=n+1$.
Then $\sum_{n=0}^{6}$ becomes $\sum_{m=1}^{7}$, and the summand $(n+1)^{3}$ becomes m^{3}.

Manipulating sums

- Can shift the dummy variable: given

$$
\sum_{n=0}^{6}(n+1)^{3}
$$

can let $m=n+1$.
Then $\sum_{n=0}^{6}$ becomes $\sum_{m=1}^{7}$, and the summand $(n+1)^{3}$ becomes m^{3}.
So

$$
\sum_{n=0}^{6}(n+1)^{3}=\sum_{m=1}^{7} m^{3}
$$

An example

An example

Let

$$
S=\sum_{n=1}^{99}\left((n+1)^{3}-n^{3}\right) .
$$

An example

Let

$$
S=\sum_{n=1}^{99}\left((n+1)^{3}-n^{3}\right) .
$$

First split the summand:

$$
S=\sum_{n=1}^{99}(n+1)^{3}-\sum_{n=1}^{99} n^{3} .
$$

An example

Let

$$
S=\sum_{n=1}^{99}\left((n+1)^{3}-n^{3}\right) .
$$

First split the summand:

$$
S=\sum_{n=1}^{99}(n+1)^{3}-\sum_{n=1}^{99} n^{3} .
$$

Now let $m=n+1$ in the first sum, and $m=n$ in the second:

$$
S=\sum_{m=2}^{100} m^{3}-\sum_{m=1}^{99} m^{3}
$$

An example

$$
S=\sum_{m=2}^{100} m^{3}-\sum_{m=1}^{99} m^{3}
$$

An example

$$
S=\sum_{m=2}^{100} m^{3}-\sum_{m=1}^{99} m^{3}
$$

Now spit off the terms $m=100$ and $m=1$:

An example

$$
S=\sum_{m=2}^{100} m^{3}-\sum_{m=1}^{99} m^{3}
$$

Now spit off the terms $m=100$ and $m=1$:

$$
S=\sum_{m=2}^{99} m^{3}+100^{3}-\sum_{m=2}^{99} m^{3}-1^{3}
$$

An example

$$
S=\sum_{m=2}^{100} m^{3}-\sum_{m=1}^{99} m^{3}
$$

Now spit off the terms $m=100$ and $m=1$:

$$
\begin{aligned}
S & =\sum_{m=2}^{99} m^{3}+100^{3}-\sum_{m=2}^{99} m^{3}-1^{3} \\
& =999999
\end{aligned}
$$

Products

Products work in the same way as sums, using Π :

$$
\prod_{n=a}^{b} x_{n}
$$

Products

Products work in the same way as sums, using Π :

$$
\prod_{n=a}^{b} x_{n} \quad \text { means } \quad x_{a} \times x_{a+1} \times \cdots \times x_{b}
$$

Products

Products work in the same way as sums, using Π :

$$
\prod_{n=a}^{b} x_{n} \quad \text { means } \quad x_{a} \times x_{a+1} \times \cdots \times x_{b}
$$

e.g.

$$
\prod_{n=0}^{3}(2 n-1)=
$$

Products

Products work in the same way as sums, using Π :

$$
\prod_{n=a}^{b} x_{n} \quad \text { means } \quad x_{a} \times x_{a+1} \times \cdots \times x_{b}
$$

e.g.

$$
\prod_{n=0}^{3}(2 n-1)=-1 \times 1 \times 3 \times 5=-15
$$

Products

Products work in the same way as sums, using Π :

$$
\prod_{n=a}^{b} x_{n} \quad \text { means } \quad x_{a} \times x_{a+1} \times \cdots \times x_{b}
$$

e.g.

$$
\prod_{n=0}^{3}(2 n-1)=-1 \times 1 \times 3 \times 5=-15
$$

The techniques we learned for manipulating sums can all be used with products too.

Factorials

Factorials

Special case of product: factorial

Factorials

Special case of product: factorial

$$
m!=\prod_{n=1}^{m} n
$$

Factorials

Special case of product: factorial

$$
m!=\prod_{n=1}^{m} n
$$

(We also define $0!=1$.)

Statements

Statements

Statement: expression which can be a sentence by itself, and is either true or false.

Statements

Statement: expression which can be a sentence by itself, and is either true or false.
"Paris is the capital of Vietnam."

Statements

Statement: expression which can be a sentence by itself, and is either true or false.
"Paris is the capital of Vietnam."
"Yesterday I went to the supermarket."

Statements

Statement: expression which can be a sentence by itself, and is either true or false.
"Paris is the capital of Vietnam."
"Yesterday I went to the supermarket."
" $1+2=3$."

Statements

Statement: expression which can be a sentence by itself, and is either true or false.
"Paris is the capital of Vietnam."
"Yesterday I went to the supermarket."
" $1+2$ = 3 ."
"Every prime number is odd."

Statements

Statement: expression which can be a sentence by itself, and is either true or false.
"Paris is the capital of Vietnam."
"Yesterday I went to the supermarket."
" $1+2$ = 3 ."
"Every prime number is odd."
X "The capital of Spain."

Statements

Statement: expression which can be a sentence by itself, and is either true or false.
"Paris is the capital of Vietnam."
"Yesterday I went to the supermarket."
" $1+2=3$."
"Every prime number is odd."
X "The capital of Spain."
X " $2+4$."

Statements

Statement: expression which can be a sentence by itself, and is either true or false.
"Paris is the capital of Vietnam."
"Yesterday I went to the supermarket."
" $1+2$ = 3 ."
"Every prime number is odd."
X "The capital of Spain."
X " $2+4$."
X "The set of all buses in London."

