Real numbers

```
where n \in \mathbb{Z} and a_1, a_2, a_3, \ldots \in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}.
```

Real numbers

Real number: infinite decimal $n.a_1a_2a_3...$

where $n \in \mathbb{Z}$ and $a_1, a_2, a_3, \ldots \in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$.

 ${\mathbb R}$ denotes the set of all real numbers.

```
where n \in \mathbb{Z} and a_1, a_2, a_3, \ldots \in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}.
```

 \mathbb{R} denotes the set of all real numbers. Numbers in $\mathbb{R} \setminus \mathbb{Q}$ are called irrational.

where $n \in \mathbb{Z}$ and $a_1, a_2, a_3, \ldots \in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$.

 \mathbb{R} denotes the set of all real numbers. Numbers in $\mathbb{R} \setminus \mathbb{Q}$ are called irrational.

Different decimals usually correspond to different real numbers.

where $n \in \mathbb{Z}$ and $a_1, a_2, a_3, \ldots \in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$.

 \mathbb{R} denotes the set of all real numbers. Numbers in $\mathbb{R} \setminus \mathbb{Q}$ are called irrational.

Different decimals usually correspond to different real numbers. But

0.99999...=1.

where $n \in \mathbb{Z}$ and $a_1, a_2, a_3, \ldots \in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$.

 \mathbb{R} denotes the set of all real numbers. Numbers in $\mathbb{R} \setminus \mathbb{Q}$ are called irrational.

Different decimals usually correspond to different real numbers. But

0.99999...=1.

Similarly

$$24.55299999\ldots = 24.553$$

etc.

▶
$$1 < \sqrt{2} < 2$$
 so $\sqrt{2} = 1.???...$

We can find the decimal expansion of $\sqrt{2}$ one digit at a time using the ordering < on \mathbb{R} :

▶ $1 < \sqrt{2} < 2$ so $\sqrt{2} = 1.???...$ ▶ $(1.4)^2 < 2 < (1.5)^2$

We can find the decimal expansion of $\sqrt{2}$ one digit at a time using the ordering < on \mathbb{R} :

▶ $1 < \sqrt{2} < 2$ so $\sqrt{2} = 1.???...$ ▶ $1.4 < \sqrt{2} < 1.5$

We can find the decimal expansion of $\sqrt{2}$ one digit at a time using the ordering < on \mathbb{R} :

▶ $1 < \sqrt{2} < 2$ so $\sqrt{2} = 1.???...$ ▶ $1.4 < \sqrt{2} < 1.5$ so $\sqrt{2} = 1.4???...$

We can find the decimal expansion of $\sqrt{2}$ one digit at a time using the ordering < on \mathbb{R} :

1 < √2 < 2 so √2 = 1.???...
1.4 < √2 < 1.5 so √2 = 1.4???...
(1.41)² < 2 < (1.42)²

We can find the decimal expansion of $\sqrt{2}$ one digit at a time using the ordering < on \mathbb{R} :

▶ $1 < \sqrt{2} < 2$ so $\sqrt{2} = 1.???...$ ▶ $1.4 < \sqrt{2} < 1.5$ so $\sqrt{2} = 1.4???...$ ▶ $1.41 < \sqrt{2} < 1.42$

We can find the decimal expansion of $\sqrt{2}$ one digit at a time using the ordering < on \mathbb{R} :

1 < √2 < 2 so √2 = 1.???...
1.4 < √2 < 1.5 so √2 = 1.4???...
1.41 < √2 < 1.42 so √2 = 1.41???...

. . .

We can find the decimal expansion of $\sqrt{2}$ one digit at a time using the ordering < on \mathbb{R} :

▶ $1 < \sqrt{2} < 2$ so $\sqrt{2} = 1.???...$ ▶ $1.4 < \sqrt{2} < 1.5$ so $\sqrt{2} = 1.4???...$ ▶ $1.41 < \sqrt{2} < 1.42$ so $\sqrt{2} = 1.41???...$

We can find the decimal expansion of $\sqrt{2}$ one digit at a time using the ordering < on \mathbb{R} :

▶
$$1 < \sqrt{2} < 2$$
 so $\sqrt{2} = 1.???...$
▶ $1.4 < \sqrt{2} < 1.5$ so $\sqrt{2} = 1.4???...$
▶ $1.41 < \sqrt{2} < 1.42$ so $\sqrt{2} = 1.41???...$
...

We end up with an infinite decimal

$$1.4142135\ldots = \sqrt{2}.$$

We can find the decimal expansion of $\sqrt{2}$ one digit at a time using the ordering < on \mathbb{R} :

▶
$$1 < \sqrt{2} < 2$$
 so $\sqrt{2} = 1.???...$
▶ $1.4 < \sqrt{2} < 1.5$ so $\sqrt{2} = 1.4???...$
▶ $1.41 < \sqrt{2} < 1.42$ so $\sqrt{2} = 1.41???...$
...

We end up with an infinite decimal

$$1.4142135\ldots = \sqrt{2}.$$

So extending from \mathbb{Q} to \mathbb{R} allows to to solve equations like $x^2 = 2$.

Maximum

If X is infinite, it might not have a maximum.

If X is infinite, it might not have a maximum.

If X is infinite, it might not have a maximum.

[0, 1] has a maximum, namely 1.
N has no maximum.

If X is infinite, it might not have a maximum.

- ▶ [0, 1] has a maximum, namely 1.
- \blacktriangleright N has no maximum.
- ▶ (0, 1) has no maximum.

 $X \subseteq \mathbb{R}, u \in \mathbb{R}.$

 $X \subseteq \mathbb{R}, u \in \mathbb{R}.$ *u* is an upper bound for *X* if $x \leq u$ for all $x \in X$.

 $X \subseteq \mathbb{R}, u \in \mathbb{R}.$ *u* is an upper bound for *X* if $x \leq u$ for all $x \in X$. *X* is bounded above if it has an upper bound.

 $X \subseteq \mathbb{R}, u \in \mathbb{R}.$ *u* is an upper bound for *X* if $x \leq u$ for all $x \in X$. *X* is bounded above if it has an upper bound.

 $X \subseteq \mathbb{R}, u \in \mathbb{R}.$ *u* is an upper bound for *X* if $x \leq u$ for all $x \in X$. *X* is bounded above if it has an upper bound.


```
▶ (0, 1) is bounded above: 1 is an upper bound.
```

Supremum

 \triangleright s is an upper bound for X

- \triangleright s is an upper bound for X
- ▶ if *t* is any upper bound for *X*, then $s \leq t$.

- \triangleright s is an upper bound for X
- ▶ if *t* is any upper bound for *X*, then $s \leq t$.

So *s* is the lowest upper bound for *X*.

- \triangleright s is an upper bound for X
- ▶ if *t* is any upper bound for *X*, then $s \leq t$.

So *s* is the lowest upper bound for *X*.

e.g. if $X = \{1, 4, 5\}$, then 5 is a supremum for X.

- \triangleright s is an upper bound for X
- ▶ if *t* is any upper bound for *X*, then $s \leq t$.

So *s* is the lowest upper bound for *X*.

e.g. if $X = \{1, 4, 5\}$, then 5 is a supremum for X.

if X = (0, 1), then 1 is a supremum for X.

Supremum

Lemma: If *X* has a supremum, then the supremum is unique.

Lemma: If *X* has a supremum, then the supremum is unique.

Write $\sup X$ for the supremum of X, if it exists.

Lemma: If *X* has a supremum, then the supremum is unique.

Write $\sup X$ for the supremum of X, if it exists.

Also write sup $X = \infty$ if X is not bounded above, and sup $= -\infty$.

Why do we need \mathbb{R} ?

Why do we need \mathbb{R} ?

Let

$$X = \left\{ x \in \mathbb{Q} : x^2 \leqslant 2 \right\}.$$

Why do we need \mathbb{R} ?

Let

$$X = \left\{ x \in \mathbb{Q} : x^2 \leqslant 2 \right\}.$$

Then X is bounded above, but it has no maximum