Real numbers

Real numbers

Real number: infinite decimal n. $a_{1} a_{2} a_{3} \ldots$
where $n \in \mathbb{Z}$ and $a_{1}, a_{2}, a_{3}, \ldots \in\{0,1,2,3,4,5,6,7,8,9\}$.

Real numbers

Real number: infinite decimal $n \cdot a_{1} a_{2} a_{3} \ldots$
where $n \in \mathbb{Z}$ and $a_{1}, a_{2}, a_{3}, \ldots \in\{0,1,2,3,4,5,6,7,8,9\}$.
\mathbb{R} denotes the set of all real numbers.

Real numbers

Real number: infinite decimal $n . a_{1} a_{2} a_{3} \ldots$
where $n \in \mathbb{Z}$ and $a_{1}, a_{2}, a_{3}, \ldots \in\{0,1,2,3,4,5,6,7,8,9\}$.
\mathbb{R} denotes the set of all real numbers. Numbers in $\mathbb{R} \backslash \mathbb{Q}$ are called irrational.

Real numbers

Real number: infinite decimal $n . a_{1} a_{2} a_{3} \ldots$
where $n \in \mathbb{Z}$ and $a_{1}, a_{2}, a_{3}, \ldots \in\{0,1,2,3,4,5,6,7,8,9\}$.
\mathbb{R} denotes the set of all real numbers. Numbers in $\mathbb{R} \backslash \mathbb{Q}$ are called irrational.

Different decimals usually correspond to different real numbers.

Real numbers

Real number: infinite decimal $n . a_{1} a_{2} a_{3} \ldots$
where $n \in \mathbb{Z}$ and $a_{1}, a_{2}, a_{3}, \ldots \in\{0,1,2,3,4,5,6,7,8,9\}$.
\mathbb{R} denotes the set of all real numbers. Numbers in $\mathbb{R} \backslash \mathbb{Q}$ are called irrational.

Different decimals usually correspond to different real numbers. But

$$
0.99999 \ldots=1
$$

Real numbers

Real number: infinite decimal $n . a_{1} a_{2} a_{3} \ldots$
where $n \in \mathbb{Z}$ and $a_{1}, a_{2}, a_{3}, \ldots \in\{0,1,2,3,4,5,6,7,8,9\}$.
\mathbb{R} denotes the set of all real numbers. Numbers in $\mathbb{R} \backslash \mathbb{Q}$ are called irrational.

Different decimals usually correspond to different real numbers. But

$$
0.99999 \ldots=1
$$

Similarly

$$
24.55299999 \ldots=24.553
$$

etc.

Decimal expansion of $\sqrt{2}$

Decimal expansion of $\sqrt{2}$

We can find the decimal expansion of $\sqrt{2}$ one digit at a time using the ordering $<$ on \mathbb{R} :

Decimal expansion of $\sqrt{2}$

We can find the decimal expansion of $\sqrt{2}$ one digit at a time using the ordering $<$ on \mathbb{R} :

- $\mathbf{1}^{2}<2<2^{2}$

Decimal expansion of $\sqrt{2}$

We can find the decimal expansion of $\sqrt{2}$ one digit at a time using the ordering $<$ on \mathbb{R} :

- $1<\sqrt{2}<2$

Decimal expansion of $\sqrt{2}$

We can find the decimal expansion of $\sqrt{2}$ one digit at a time using the ordering $<$ on \mathbb{R} :

- $1<\sqrt{2}<2$ so $\sqrt{2}=1$.??? \ldots

Decimal expansion of $\sqrt{2}$

We can find the decimal expansion of $\sqrt{2}$ one digit at a time using the ordering $<$ on \mathbb{R} :

- $1<\sqrt{2}<2$ so $\sqrt{2}=1$.??? \ldots
- $(1.4)^{2}<2<(1.5)^{2}$

Decimal expansion of $\sqrt{2}$

We can find the decimal expansion of $\sqrt{2}$ one digit at a time using the ordering $<$ on \mathbb{R} :

- $1<\sqrt{2}<2$ so $\sqrt{2}=1 . ? ? ? \ldots$
- $1.4<\sqrt{2}<1.5$

Decimal expansion of $\sqrt{2}$

We can find the decimal expansion of $\sqrt{2}$ one digit at a time using the ordering $<$ on \mathbb{R} :

- $1<\sqrt{2}<2$ so $\sqrt{2}=1$.??? \ldots
- $1.4<\sqrt{2}<1.5$ so $\sqrt{2}=1.4$??? \ldots

Decimal expansion of $\sqrt{2}$

We can find the decimal expansion of $\sqrt{2}$ one digit at a time using the ordering $<$ on \mathbb{R} :

- $1<\sqrt{2}<2$ so $\sqrt{2}=1$.??? \ldots
- $1.4<\sqrt{2}<1.5$ so $\sqrt{2}=1.4$??? \ldots
- $(1.41)^{2}<2<(1.42)^{2}$

Decimal expansion of $\sqrt{2}$

We can find the decimal expansion of $\sqrt{2}$ one digit at a time using the ordering $<$ on \mathbb{R} :

- $1<\sqrt{2}<2$ so $\sqrt{2}=1$.??? \ldots
- $1.4<\sqrt{2}<1.5$ so $\sqrt{2}=1.4$??? \ldots
- $1.41<\sqrt{2}<1.42$

Decimal expansion of $\sqrt{2}$

We can find the decimal expansion of $\sqrt{2}$ one digit at a time using the ordering $<$ on \mathbb{R} :

- $1<\sqrt{2}<2$ so $\sqrt{2}=1$.??? \ldots
- $1.4<\sqrt{2}<1.5$ so $\sqrt{2}=1.4$??? \ldots
- $1.41<\sqrt{2}<1.42$ so $\sqrt{2}=1.41$??? \ldots

Decimal expansion of $\sqrt{2}$

We can find the decimal expansion of $\sqrt{2}$ one digit at a time using the ordering $<$ on \mathbb{R} :

- $1<\sqrt{2}<2$ so $\sqrt{2}=1$.??? \ldots
- $1.4<\sqrt{2}<1.5$ so $\sqrt{2}=1.4$? ? ? \ldots
$-1.41<\sqrt{2}<1.42$ so $\sqrt{2}=1.41$??? \ldots

Decimal expansion of $\sqrt{2}$

We can find the decimal expansion of $\sqrt{2}$ one digit at a time using the ordering $<$ on \mathbb{R} :

- $1<\sqrt{2}<2$ so $\sqrt{2}=1 . ? ? ? \ldots$
- $1.4<\sqrt{2}<1.5$ so $\sqrt{2}=1.4$??? \ldots
- $1.41<\sqrt{2}<1.42$ so $\sqrt{2}=1.41$??? ...

We end up with an infinite decimal

$$
1.4142135 \ldots=\sqrt{2}
$$

Decimal expansion of $\sqrt{2}$

We can find the decimal expansion of $\sqrt{2}$ one digit at a time using the ordering $<$ on \mathbb{R} :

- $1<\sqrt{2}<2$ so $\sqrt{2}=1$.??? \ldots
- $1.4<\sqrt{2}<1.5$ so $\sqrt{2}=1.4$??? \ldots
- $1.41<\sqrt{2}<1.42$ so $\sqrt{2}=1.41$??? \ldots

We end up with an infinite decimal

$$
1.4142135 \ldots=\sqrt{2}
$$

So extending from \mathbb{Q} to \mathbb{R} allows to to solve equations like $x^{2}=2$.

Maximum

Maximum

If X is a finite non-empty set of real numbers then X has a maximum: an element which is bigger than all the others.

Maximum

If X is a finite non-empty set of real numbers then X has a maximum: an element which is bigger than all the others. Write this as max X.

Maximum

If X is a finite non-empty set of real numbers then X has a maximum: an element which is bigger than all the others. Write this as max X.

If X is infinite, it might not have a maximum.

Maximum

If X is a finite non-empty set of real numbers then X has a maximum: an element which is bigger than all the others. Write this as max X.

If X is infinite, it might not have a maximum.

- $[0,1]$ has a maximum, namely 1 .

Maximum

If X is a finite non-empty set of real numbers then X has a maximum: an element which is bigger than all the others. Write this as max X.

If X is infinite, it might not have a maximum.

- $[0,1]$ has a maximum, namely 1 .
- \mathbb{N} has no maximum.

Maximum

If X is a finite non-empty set of real numbers then X has a maximum: an element which is bigger than all the others. Write this as max X.

If X is infinite, it might not have a maximum.

- $[0,1]$ has a maximum, namely 1 .
- \mathbb{N} has no maximum.
- $(0,1)$ has no maximum.

Upper bounds

$$
X \subseteq \mathbb{R}, u \in \mathbb{R}
$$

Upper bounds

$X \subseteq \mathbb{R}, u \in \mathbb{R}$.
u is an upper bound for X if $x \leqslant u$ for all $x \in X$.

Upper bounds

$X \subseteq \mathbb{R}, u \in \mathbb{R}$.
u is an upper bound for X if $x \leqslant u$ for all $x \in X$. X is bounded above if it has an upper bound.

Upper bounds

$X \subseteq \mathbb{R}, u \in \mathbb{R}$.
u is an upper bound for X if $x \leqslant u$ for all $x \in X$. X is bounded above if it has an upper bound.

- \mathbb{N} is not bounded above.

Upper bounds

$X \subseteq \mathbb{R}, u \in \mathbb{R}$.
u is an upper bound for X if $x \leqslant u$ for all $x \in X$. X is bounded above if it has an upper bound.

- \mathbb{N} is not bounded above.
- $(0,1)$ is bounded above: 1 is an upper bound.

Supremum

Supremum

Suppose X is a non-empty subset of \mathbb{R}. A supremum for X is a real number s such that

Supremum

Suppose X is a non-empty subset of \mathbb{R}. A supremum for X is a real number s such that

- s is an upper bound for X

Supremum

Suppose X is a non-empty subset of \mathbb{R}. A supremum for X is a real number s such that

- s is an upper bound for X
- if t is any upper bound for X, then $s \leqslant t$.

Supremum

Suppose X is a non-empty subset of \mathbb{R}. A supremum for X is a real number s such that

- s is an upper bound for X
- if t is any upper bound for X, then $s \leqslant t$.

So s is the lowest upper bound for X.

Supremum

Suppose X is a non-empty subset of \mathbb{R}. A supremum for X is a real number s such that

- s is an upper bound for X
- if t is any upper bound for X, then $s \leqslant t$.

So s is the lowest upper bound for X.
e.g. if $X=\{1,4,5\}$, then 5 is a supremum for X.

Supremum

Suppose X is a non-empty subset of \mathbb{R}. A supremum for X is a real number s such that

- s is an upper bound for X
- if t is any upper bound for X, then $s \leqslant t$.

So s is the lowest upper bound for X.
e.g. if $X=\{1,4,5\}$, then 5 is a supremum for X.
if $X=(0,1)$, then 1 is a supremum for X.

Supremum

Supremum

Lemma: If X has a supremum, then the supremum is unique.

Supremum

Lemma: If X has a supremum, then the supremum is unique.

Write $\sup X$ for the supremum of X, if it exists.

Supremum

Lemma: If X has a supremum, then the supremum is unique.

Write $\sup X$ for the supremum of X, if it exists.

Also write $\sup X=\infty$ if X is not bounded above, and sup $=-\infty$.

Why do we need \mathbb{R} ?

Why do we need \mathbb{R} ?

Let

$$
X=\left\{x \in \mathbb{Q}: x^{2} \leqslant 2\right\} .
$$

Why do we need \mathbb{R} ?

Let

$$
x=\left\{x \in \mathbb{Q}: x^{2} \leqslant 2\right\} .
$$

Then X is bounded above, but it has no maximum ...

