Properties of sequences

Properties of sequences

Suppose $\left(a_{k}\right)_{k=1}^{\infty}$ is a sequence of real numbers.

Properties of sequences

Suppose $\left(a_{k}\right)_{k=1}^{\infty}$ is a sequence of real numbers. This is sequence is

Properties of sequences

Suppose $\left(a_{k}\right)_{k=1}^{\infty}$ is a sequence of real numbers. This is sequence is

- increasing if $a_{k}<a_{k+1}$ for all k

Properties of sequences

Suppose $\left(a_{k}\right)_{k=1}^{\infty}$ is a sequence of real numbers. This is sequence is

- increasing if $a_{k}<a_{k+1}$ for all k
- weakly increasing if $a_{k} \leqslant a_{k+1}$ for all k

Properties of sequences

Suppose $\left(a_{k}\right)_{k=1}^{\infty}$ is a sequence of real numbers. This is sequence is

- increasing if $a_{k}<a_{k+1}$ for all k
- weakly increasing if $a_{k} \leqslant a_{k+1}$ for all k
- decreasing if $a_{k}>a_{k+1}$ for all k

Properties of sequences

Suppose $\left(a_{k}\right)_{k=1}^{\infty}$ is a sequence of real numbers. This is sequence is

- increasing if $a_{k}<a_{k+1}$ for all k
- weakly increasing if $a_{k} \leqslant a_{k+1}$ for all k
- decreasing if $a_{k}>a_{k+1}$ for all k
- weakly decreasing if $a_{k} \geqslant a_{k+1}$ for all k

Properties of sequences

Suppose $\left(a_{k}\right)_{k=1}^{\infty}$ is a sequence of real numbers. This is sequence is

- increasing if $a_{k}<a_{k+1}$ for all k
- weakly increasing if $a_{k} \leqslant a_{k+1}$ for all k
- decreasing if $a_{k}>a_{k+1}$ for all k
- weakly decreasing if $a_{k} \geqslant a_{k+1}$ for all k
- constant if $a_{k}=a_{k+1}$ for all k.

Properties of sequences

Suppose $\left(a_{k}\right)_{k=1}^{\infty}$ is a sequence of real numbers. This is sequence is

- increasing if $a_{k}<a_{k+1}$ for all k
- weakly increasing if $a_{k} \leqslant a_{k+1}$ for all k
- decreasing if $a_{k}>a_{k+1}$ for all k
- weakly decreasing if $a_{k} \geqslant a_{k+1}$ for all k
- constant if $a_{k}=a_{k+1}$ for all k.

We can put eventually before any of these properties to mean that the sequence has that property after a certain point.

Examples

Examples

- The sequence $\left(a_{k}\right)_{k=1}^{\infty}$ where $a_{k}=2^{k}: \quad 2,4,8,16,32, \ldots$

Examples

- The sequence $\left(a_{k}\right)_{k=1}^{\infty}$ where $a_{k}=2^{k}: \quad 2,4,8,16,32, \ldots$ This is increasing.

Examples

- The sequence $\left(a_{k}\right)_{k=1}^{\infty}$ where $a_{k}=2^{k}: \quad 2,4,8,16,32, \ldots$ This is increasing.
- The sequence $\left(a_{k}\right)_{k=1}^{\infty}$ where $a_{k}=\lfloor k / 2\rfloor: \quad 0,1,1,2,2,3,3,4,4, \ldots$

Examples

- The sequence $\left(a_{k}\right)_{k=1}^{\infty}$ where $a_{k}=2^{k}: \quad 2,4,8,16,32, \ldots$ This is increasing.
- The sequence $\left(a_{k}\right)_{k=1}^{\infty}$ where $a_{k}=\lfloor k / 2\rfloor: \quad 0,1,1,2,2,3,3,4,4, \ldots$ This is weakly increasing but not increasing.

Examples

- The sequence $\left(a_{k}\right)_{k=1}^{\infty}$ where $a_{k}=2^{k}: \quad 2,4,8,16,32, \ldots$ This is increasing.
- The sequence $\left(a_{k}\right)_{k=1}^{\infty}$ where $a_{k}=\lfloor k / 2\rfloor: \quad 0,1,1,2,2,3,3,4,4, \ldots$ This is weakly increasing but not increasing.
- The sequence $\left(a_{k}\right)_{k=1}^{\infty}$ where $a_{k}=(k-3)^{2}: \quad 4,1,0,1,4,9,16, \ldots$

Examples

- The sequence $\left(a_{k}\right)_{k=1}^{\infty}$ where $a_{k}=2^{k}: \quad 2,4,8,16,32, \ldots$ This is increasing.
- The sequence $\left(a_{k}\right)_{k=1}^{\infty}$ where $a_{k}=\lfloor k / 2\rfloor: \quad 0,1,1,2,2,3,3,4,4, \ldots$ This is weakly increasing but not increasing.
- The sequence $\left(a_{k}\right)_{k=1}^{\infty}$ where $a_{k}=(k-3)^{2}: \quad 4,1,0,1,4,9,16, \ldots$ This is not weakly increasing, but is eventually increasing.

Examples

- The sequence $\left(a_{k}\right)_{k=1}^{\infty}$ where $a_{k}=2^{k}: \quad 2,4,8,16,32, \ldots$ This is increasing.
- The sequence $\left(a_{k}\right)_{k=1}^{\infty}$ where $a_{k}=\lfloor k / 2\rfloor: \quad 0,1,1,2,2,3,3,4,4, \ldots$ This is weakly increasing but not increasing.
- The sequence $\left(a_{k}\right)_{k=1}^{\infty}$ where $a_{k}=(k-3)^{2}: \quad 4,1,0,1,4,9,16, \ldots$ This is not weakly increasing, but is eventually increasing.
- The sequence $\left(a_{k}\right)_{k=1}^{\infty}$ where $a_{k}=\lfloor 6 / k\rfloor: \quad 6,3,2,1,1,1,0,0,0, \ldots$

Examples

- The sequence $\left(a_{k}\right)_{k=1}^{\infty}$ where $a_{k}=2^{k}: \quad 2,4,8,16,32, \ldots$ This is increasing.
- The sequence $\left(a_{k}\right)_{k=1}^{\infty}$ where $a_{k}=\lfloor k / 2\rfloor: \quad 0,1,1,2,2,3,3,4,4, \ldots$ This is weakly increasing but not increasing.
- The sequence $\left(a_{k}\right)_{k=1}^{\infty}$ where $a_{k}=(k-3)^{2}: \quad 4,1,0,1,4,9,16, \ldots$ This is not weakly increasing, but is eventually increasing.
- The sequence $\left(a_{k}\right)_{k=1}^{\infty}$ where $a_{k}=\lfloor 6 / k\rfloor: \quad 6,3,2,1,1,1,0,0,0, \ldots$ This is weakly decreasing and eventually constant.

Rational numbers

Rational numbers

We extended \mathbb{N} to \mathbb{Z} to make subtraction possible.

Rational numbers

We extended \mathbb{N} to \mathbb{Z} to make subtraction possible.

Now we extend again to make division possible.

Rational numbers

We extended \mathbb{N} to \mathbb{Z} to make subtraction possible.

Now we extend again to make division possible.
Rational number: expression $\frac{a}{b}$ where $a, b \in \mathbb{Z}$ and $b \neq 0$.

Rational numbers

We extended \mathbb{N} to \mathbb{Z} to make subtraction possible.

Now we extend again to make division possible.
Rational number: expression $\frac{a}{b}$ where $a, b \in \mathbb{Z}$ and $b \neq 0$.
But: we regard $\frac{a}{b}$ and $\frac{c}{d}$ as being the same if $a d=b c$.

Rational numbers

We extended \mathbb{N} to \mathbb{Z} to make subtraction possible.

Now we extend again to make division possible.
Rational number: expression $\frac{a}{b}$ where $a, b \in \mathbb{Z}$ and $b \neq 0$.
But: we regard $\frac{a}{b}$ and $\frac{c}{d}$ as being the same if $a d=b c$.
\mathbb{Q} denotes the set of rational numbers.

Rational numbers

We extended \mathbb{N} to \mathbb{Z} to make subtraction possible.

Now we extend again to make division possible.
Rational number: expression $\frac{a}{b}$ where $a, b \in \mathbb{Z}$ and $b \neq 0$.
But: we regard $\frac{a}{b}$ and $\frac{c}{d}$ as being the same if $a d=b c$.
\mathbb{Q} denotes the set of rational numbers.

In \mathbb{Q} we can add, subtract, multiply and divide (except by 0).

Rational numbers

We extended \mathbb{N} to \mathbb{Z} to make subtraction possible.

Now we extend again to make division possible.
Rational number: expression $\frac{a}{b}$ where $a, b \in \mathbb{Z}$ and $b \neq 0$.
But: we regard $\frac{a}{b}$ and $\frac{c}{d}$ as being the same if $a d=b c$.
\mathbb{Q} denotes the set of rational numbers.

In \mathbb{Q} we can add, subtract, multiply and divide (except by 0). These operations satisfy the familiar rules.

