Suppose $(a_k)_{k=1}^{\infty}$ is a sequence of real numbers.

Suppose $(a_k)_{k=1}^{\infty}$ is a sequence of real numbers. This is sequence is

▶ increasing if $a_k < a_{k+1}$ for all k

- ▶ increasing if $a_k < a_{k+1}$ for all k
- weakly increasing if $a_k \leq a_{k+1}$ for all k

- ▶ increasing if $a_k < a_{k+1}$ for all k
- weakly increasing if $a_k \leq a_{k+1}$ for all k
- decreasing if $a_k > a_{k+1}$ for all k

- ▶ increasing if $a_k < a_{k+1}$ for all k
- weakly increasing if $a_k \leq a_{k+1}$ for all k
- decreasing if $a_k > a_{k+1}$ for all k
- weakly decreasing if $a_k \ge a_{k+1}$ for all k

- increasing if $a_k < a_{k+1}$ for all k
- weakly increasing if $a_k \leq a_{k+1}$ for all k
- decreasing if $a_k > a_{k+1}$ for all k
- weakly decreasing if $a_k \ge a_{k+1}$ for all k
- ▶ constant if $a_k = a_{k+1}$ for all *k*.

Suppose $(a_k)_{k=1}^{\infty}$ is a sequence of real numbers. This is sequence is

- increasing if $a_k < a_{k+1}$ for all k
- weakly increasing if $a_k \leq a_{k+1}$ for all k
- decreasing if $a_k > a_{k+1}$ for all k
- weakly decreasing if $a_k \ge a_{k+1}$ for all k
- ▶ constant if $a_k = a_{k+1}$ for all *k*.

We can put eventually before any of these properties to mean that the sequence has that property after a certain point.

Examples

• The sequence $(a_k)_{k=1}^{\infty}$ where $a_k = 2^k$: 2, 4, 8, 16, 32, ...

► The sequence $(a_k)_{k=1}^{\infty}$ where $a_k = 2^k$: 2, 4, 8, 16, 32, ... This is increasing.

- ► The sequence $(a_k)_{k=1}^{\infty}$ where $a_k = 2^k$: 2, 4, 8, 16, 32, ... This is increasing.
- The sequence $(a_k)_{k=1}^{\infty}$ where $a_k = \lfloor k/2 \rfloor$: 0, 1, 1, 2, 2, 3, 3, 4, 4, ...

- ► The sequence $(a_k)_{k=1}^{\infty}$ where $a_k = 2^k$: 2, 4, 8, 16, 32, ... This is increasing.
- ► The sequence $(a_k)_{k=1}^{\infty}$ where $a_k = \lfloor k/2 \rfloor$: 0, 1, 1, 2, 2, 3, 3, 4, 4, ... This is weakly increasing but not increasing.

- ► The sequence $(a_k)_{k=1}^{\infty}$ where $a_k = 2^k$: 2, 4, 8, 16, 32, ... This is increasing.
- ► The sequence $(a_k)_{k=1}^{\infty}$ where $a_k = \lfloor k/2 \rfloor$: 0, 1, 1, 2, 2, 3, 3, 4, 4, ... This is weakly increasing but not increasing.
- The sequence $(a_k)_{k=1}^{\infty}$ where $a_k = (k-3)^2$: 4, 1, 0, 1, 4, 9, 16, ...

- ► The sequence $(a_k)_{k=1}^{\infty}$ where $a_k = 2^k$: 2, 4, 8, 16, 32, ... This is increasing.
- ► The sequence $(a_k)_{k=1}^{\infty}$ where $a_k = \lfloor k/2 \rfloor$: 0, 1, 1, 2, 2, 3, 3, 4, 4, ... This is weakly increasing but not increasing.
- ► The sequence $(a_k)_{k=1}^{\infty}$ where $a_k = (k-3)^2$: 4, 1, 0, 1, 4, 9, 16, ... This is not weakly increasing, but is eventually increasing.

► The sequence $(a_k)_{k=1}^{\infty}$ where $a_k = 2^k$: 2, 4, 8, 16, 32, ... This is increasing.

- ► The sequence $(a_k)_{k=1}^{\infty}$ where $a_k = \lfloor k/2 \rfloor$: 0, 1, 1, 2, 2, 3, 3, 4, 4, ... This is weakly increasing but not increasing.
- ► The sequence $(a_k)_{k=1}^{\infty}$ where $a_k = (k-3)^2$: 4, 1, 0, 1, 4, 9, 16, ... This is not weakly increasing, but is eventually increasing.

• The sequence $(a_k)_{k=1}^{\infty}$ where $a_k = \lfloor 6/k \rfloor$: 6, 3, 2, 1, 1, 1, 0, 0, 0, ...

- ► The sequence $(a_k)_{k=1}^{\infty}$ where $a_k = 2^k$: 2, 4, 8, 16, 32, ... This is increasing.
- ► The sequence $(a_k)_{k=1}^{\infty}$ where $a_k = \lfloor k/2 \rfloor$: 0, 1, 1, 2, 2, 3, 3, 4, 4, ... This is weakly increasing but not increasing.
- ► The sequence $(a_k)_{k=1}^{\infty}$ where $a_k = (k-3)^2$: 4, 1, 0, 1, 4, 9, 16, ... This is not weakly increasing, but is eventually increasing.
- ► The sequence $(a_k)_{k=1}^{\infty}$ where $a_k = \lfloor 6/k \rfloor$: 6, 3, 2, 1, 1, 1, 0, 0, 0, ... This is weakly decreasing and eventually constant.

Rational numbers

Rational numbers

We extended $\mathbb N$ to $\mathbb Z$ to make subtraction possible.

Rational numbers

We extended $\mathbb N$ to $\mathbb Z$ to make subtraction possible.

Now we extend again to make division possible.

Now we extend again to make division possible.

Rational number: expression
$$rac{a}{b}$$
 where $a,b\in\mathbb{Z}$ and $b
eq 0.$

Now we extend again to make division possible.

Rational number: expression $\frac{a}{b}$ where $a, b \in \mathbb{Z}$ and $b \neq 0$. But: we regard $\frac{a}{b}$ and $\frac{c}{d}$ as being the same if ad = bc.

Now we extend again to make division possible.

Rational number: expression
$$rac{a}{b}$$
 where $a, b \in \mathbb{Z}$ and $b \neq 0$.
But: we regard $rac{a}{b}$ and $rac{c}{d}$ as being the same if $ad = bc$.

 ${\ensuremath{\mathbb Q}}$ denotes the set of rational numbers.

Now we extend again to make division possible.

Rational number: expression
$$rac{a}{b}$$
 where $a, b \in \mathbb{Z}$ and $b \neq 0$.
But: we regard $rac{a}{b}$ and $rac{c}{d}$ as being the same if $ad = bc$.

 ${\ensuremath{\mathbb Q}}$ denotes the set of rational numbers.

In \mathbb{Q} we can add, subtract, multiply and divide (except by 0).

Now we extend again to make division possible.

Rational number: expression
$$rac{a}{b}$$
 where $a, b \in \mathbb{Z}$ and $b \neq 0$.
But: we regard $rac{a}{b}$ and $rac{c}{d}$ as being the same if $ad = bc$.

 ${\ensuremath{\mathbb Q}}$ denotes the set of rational numbers.

In \mathbb{Q} we can add, subtract, multiply and divide (except by 0). These operations satisfy the familiar rules.